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a b s t r a c t

We present a method of exploiting symmetries of discrete-time optimal control problems to reduce the
dimensionality of dynamic programming iterations. The results are derived for systems with continuous
state variables, and can be applied to systems with continuous or discrete symmetry groups. We prove
that symmetries of the state update equation and stage costs induce corresponding symmetries of the
optimal cost function and the optimal policies. We then provide a general framework for computing the
optimal cost function based on gridding a space of lower dimension than the original state space. This
method does not require algebraicmanipulation of the state update equations; it only requires knowledge
of the symmetries that the state update equations possess. Since the method can be performed without
any knowledge of the state update map beyond being able to evaluate it and verify its symmetries, this
enables the method to be applied in a wide range of application problems. We illustrate these results
on two six-dimensional optimal control problems that are computationally difficult to solve by dynamic
programming without symmetry reduction.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic programming algorithm for computing optimal
control policies has, since its development, been known to suffer
from the ‘‘curse of dimensionality’’ (Bellman, 1957). Its applica-
bility in practice is typically limited to systems with four or five
continuous state variables because the number of points required
to grid a space of n continuous state variables increases exponen-
tially with the state dimension n. This complexity has led to a
collection of algorithms for approximate dynamic programming,
which scale to systems with larger state dimension but lack the
guarantees of global optimality of the solution associated with
the original dynamic programming algorithm (Bellman & Dreyfus,
1959; Bertsekas, 2012; Powell, 2007, 2016).

In practice, many real-world systems exhibit symmetries that
can be exploited to reduce the complexity of systemmodels. Sym-
metry reduction has found applications in fields ranging from dif-
ferential equations (Bluman&Kumei, 2013; Clarksonz&Mansfield,
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1994) to model checking (Emerson & Sistla, 1996; Kwiatkowska,
Norman, & Parker, 2006). In control engineering, symmetries have
been exploited to improve control of mechanical systems (Bloch,
Krishnaprasad, Marsden, & Murray, 1996; Bullo & Murray, 1999;
Marsden, Montgomery, & Ratiu, 1990), developmore reliable state
estimators (Barrau & Bonnabel, 2014), study the controllability
of multiagent systems (Rahmani, Ji, Mesbahi, & Egerstedt, 2009)
and to reduce the complexity of stability and performance cer-
tification for interconnected systems (Arcak, Meissen, & Packard,
2016; Rufino Ferreira, Meissen, Arcak, & Packard, 2017). Symmetry
reduction has also been applied to the computation of optimal
control policies for continuous-time systems in Grizzle andMarcus
(1984) and Ohsawa (2013) and Markov decision processes (MDPs)
in Zinkevich and Balch (2001) and Narayanamurthy and Ravindran
(2007).

In this paper, we present a theory of symmetry reduction for
the optimal control of discrete-time, stochastic nonlinear systems
with continuous state variables. This reduction allows dynamic
programming to be performed in a lower-dimensional state space.
Since the computational complexity of a dynamic programming
iteration increases exponentially with state dimension, this re-
duction significantly decreases computational burden. Further, our
proposedmethod does not rely on an explicit transformation of the
state update equations,making themethod applicable in situations
where such a transformation is difficult or impossible to find
analytically.
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We present two theorems that summarize our method of sym-
metry reduction. Theorem 4 describes how symmetries of the sys-
tem dynamics imply symmetries of the optimal cost and optimal
policy functions. Theorem 6 then describes amethod of computing
the cost function based on reduced coordinate system that depends
on fewer state variables.

This paper builds on the work we presented in the confer-
ence paper (Maidens, Barrau, Bonnabel, & Arcak, 2017). The most
substantial improvement is the additional theoretical results pre-
sented in Sections 2.3 and 3.2. The conference version presented
an ad hoc symmetry reduction for a magnetic resonance imaging
(MRI) application, but did not provide a general methodology for
computing the coordinate reduction. This paper addresses this
shortcoming by presenting a general method based on the moving
frame formalism, which leads to the general symmetry reduction
formula presented in Theorem 6. Additionally, the MRI example
has been reworked to match this new formalism, and the numer-
ical implementation and graphs of the numerical solution have
been improved. We have also included two new extensions of this
formalism to the case of equivariant costs in Section 3.3 and to
the synchronization problem of stochastic dynamic systems on
matrix groups in Section 3.4, along with examples to illustrate the
algorithm in these contexts.

This paper is organized as follows: in Section 2 we introduce
notation and provide background information both on dynamic
programming for optimal control, and on themathematical theory
of symmetries. In Section 3, we derive ourmain theoretical results,
that is, we prove that control system symmetries induce symme-
tries of the optimal cost function and optimal control policy, and
then leverage the result to present a general method of performing
dynamic programming in reduced coordinates. In Section 4 we
apply the algorithm to a cooperative control problem for two Du-
bins vehicles using a Lie group formulation. In Section 5 we apply
symmetry reduction to compute the solution of an optimal control
problem arising in dynamicMRI acquisition. Code to reproduce the
computational results in this paper is available at https://github.
com/maidens/Automatica-2017.

2. Dynamic programming and symmetries

In this section, we first recall the main features of dynamic pro-
gramming for optimal control of stochastic discrete time systems.
Then we introduce our problem and provide the reader with a
primer on the classical theory of symmetries. We also introduce
the notion of invariant control systems with invariant costs.

2.1. Dynamic programming for optimal control of stochastic systems

We begin by introducing dynamic programming for finite hori-
zon optimal control following the notation of Bertsekas (2005).We
consider a discrete-time dynamical system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . ,N − 1 (1)

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ Rm is the control
variable to be chosen at time k, wk ∈ W ⊆ Rℓ are independent
continuous random variables each with density pk, and N ∈ Z+ is
a finite control horizon. Associated with this system is an additive
cost function

gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

that we wish to minimize through our choice of uk. We define
a control system to be a tuple S = (X ,U,W, p, f , g,N) where
p =

∏N−1
k=0 pk is the joint density of the random variables wk.

We consider a class of control policies π = {µ0, . . . , µN−1}

where µk : X → U maps observed states to admissible control
inputs. Given an initial state x0 and a control policy π , we define
the expected cost under this policy as

Jπ (x0) = E

[
gN (xN ) +

N−1∑
k=0

gk(xk, µk(xk), wk)

]
.

An optimal policyπ∗ is defined as one thatminimizes the expected
cost:

Jπ∗ (x0) = min
π∈Π

Jπ (x0)

where Π denotes the set of all admissible control policies. The
optimal cost function, denoted J∗(x0), is defined to be the expected
cost corresponding to an optimal policy.

As in Bertsekas (2005), we usemin to denote the infimum value
regardless of whether there is a policy π ∈ Π that achieves a
minimum. In the example problems presented in Sections 4 and
5, the existence of a minimum is guaranteed by compactness or
finiteness arguments, respectively. In the general case, the optimal
cost function J∗ can be computed using the dynamic programming
algorithm regardless of the existence of minimizers, but the exis-
tence of an optimal policyπ∗ requires that aminimumbe achieved
for each xk ∈ X .

We quote the following result due to Bellman from (Bertsekas,
2005):

Proposition 1 (Dynamic Programming). For every initial state x0, the
optimal cost J∗(x0) is equal to J0(x0), given by the last step of the
following algorithm, which proceeds backward in time from period
N − 1 to period 0:

JN (xN ) = gN (xN )

Jk(xk) = min
uk∈U

E

[
gk(xk, uk, wk) + Jk+1

(
fk(xk, uk, wk)

)]
k = 0, 1, . . . ,N − 1,

(2)

where the expectation is taken with respect to the probability distri-
bution of wk defined by the density p. Furthermore, if there exists u∗

k
minimizing the right hand side of (2) for each xk and k, then the policy
π∗

= {µ∗

0, . . . , µ
∗

N−1} where µ∗

k(xk) = u∗

k is optimal.

The intermediate functions Jk(xk) for k > 0 computed in this
manner represent the optimal cost of the tail subproblem begin-
ning at xk. The optimal cost of the entire problem is given by the
function J∗(x0) = J0(x0) obtained when this recursion terminates.

2.2. Invariant system with invariant costs

We first recall the definition of a transformation group for a con-
trol system, as in Martin, Rouchon, and Rudolph (2004), Jakubczyk
(1998) and Respondek and Tall (2002). See Olver (1999) for the
more general theory.

Definition 2 (Transformation Group). A transformation group on
X × U × W is set of tuples hα = (φα, χα, ψα) parametrized by
elements α of a Lie group G having dimension r , such that the
functions φα : X → X , χα : U → U and ψα : W → W are all
C1 diffeomorphisms and satisfy:

• φe(x) = x, χe(u) = u,ψe(w) = wwhen e is the identity of the
group G and

• φa∗b(x) = φa◦φb(x),χa∗b(u) = χa◦χb(u),ψa∗b(x) = ψa◦ψb(x)
for all a, b ∈ G where ∗ denotes the group operation and ◦

denotes function composition.
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