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a b s t r a c t

We prove the following converse of the passivity theorem. Consider a causal system given by a sum of
a linear time-invariant and a passive linear time-varying input–output map. Then, in order to guarantee
stability (in the sense of finite L2-gain) of the feedback interconnection of the system with an arbitrary
nonlinear output strictly passive system, the given systemmust itself be output strictly passive. The proof
is based on the S-procedure lossless theorem. We discuss the importance of this result for the control of
systems interacting with an output strictly passive, but otherwise completely unknown, environment.
Similarly, we prove the necessity of the small-gain condition for closed-loop stability of certain time-
varying systems, extending the well-known necessity result in linear robust control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The passivity and small-gain theorems are fundamental to large
parts of systems and control theory, see e.g. Megretski and Rantzer
(1997), Moylan and Hill (1978), van der Schaft (2017), Vidyasagar
(1981) and Willems (1972). Both theorems provide a stability
‘certificate’ when feedback interconnecting the given system with
an arbitrary system which is either (in the small-gain setting)
assumed to have an L2-gain smaller than the reciprocal of the
L2-gain of the given system, or is (output strictly) passive like
the given system. These theorems are valid from linear finite-
dimensional systems to nonlinear and infinite-dimensional sys-
tems.

The current paper is concerned with the converse of these
theorems; that is the necessity of the (strict) passivity or the small-
gain condition for closed-loop stability when interconnecting in
feedback a given system with an arbitrary system, which is un-
known apart from a passivity or L2-gain assumption. Surprisingly,
this converse of the passivity theorem has hardly been studied in
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the literature; despite its fundamental importance in applications.
For example, in order to guarantee stability of a controlled robotic
system interacting with a passive, but else completely unknown,
environment, the converse of the passivity theorem tells us that the
controlled robot must be output strictly passive as seen from the
interaction port of the robot with the environment. This has far-
reaching methodological implications for control design, since it
means that rendering by control the system output strictly passive
at the interaction port is not only a valid option, but is also the
only option guaranteeing stability for an unknown passive envi-
ronment. The same holds within the context of robust nonlinear
control whenever we replace ‘environment’ by the uncertain part
of the system.

Up to now this converse passivity theoremwas only proved for
linear time-invariant single-input single-output systems in Colgate
andHogan (1988), using arguments fromNyquist stability theory, 1
exactlywith the roboticsmotivation inmind. The samemotivation
was elaborated on in Stramigioli (2015), where the following
form of a converse passivity theorem was obtained for nonlinear
systems in state space form. If a system is not passive then for any
given constantK one can define a passive system that extracts from
the given system an amount of energy that is larger than K , imply-
ing that the norm of the state of the constructed system becomes
larger than K , thereby demonstrating some sort of instability of
the closed-loop system. In the present paper, a converse of the

1 Roughly speaking, by showing that if Σ1 is not passive, a positive-real transfer
function (corresponding to a passive system Σ2) can be constructed such that the
closed-loop system fails the Nyquist stability test.
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passivity theorem will be derived for a class of input–output maps,
namely those decomposable into a sum of a linear time-invariant
map and a passive linear time-varyingmap. This converse passivity
theorem involves feedback interconnections with nonlinear sys-
tems and will be formulated in three versions in Section 3, with
their own range of applicability. In all cases the proofs are based
on the S-procedure lossless theorem due to Megretski and Treil
(1993); see also Jönsson (2001, Thm. 7).

Converse statements of the small-gain theorem are much more
present in the literature; see e.g. Zhou, Doyle, and Glover (1996,
Theorem 9.1) for the finite-dimensional linear case and Curtain
and Zwart (1995) for infinite-dimensional linear systems. How-
ever, to the best of our knowledge, the converse of the small-gain
theorem for linear time-varying systems interconnected in feed-
backwith nonlinear systems, as obtained in Section 4, is new,while
also the proof line is different from the existing one. Similarly to the
passivity case, this converse will be formulated for a class of linear
time-varying input–output maps, and the proofs, in two different
versions, will be based on the S-procedure lossless theorem.

Finally, Section 5 presents the conclusions, and discusses prob-
lems for further research. A preliminary version of some of the
results in Section 3 of this paper was presented at the IFAC World
Congress 2017; cf. Khong and van der Schaft (2017).

2. Preliminaries

This section summarizes the background for this paper; see
e.g. van der Schaft (2017) for details. Denote the set of Rn-valued
Lebesgue square-integrable functions by

Ln2 :=

{
v : [0, ∞) → Rn

| ∥v∥
2
2 :=

∫
∞

0
v(t)Tv(t) dt < ∞

}
.

For any two v, w ∈ Ln2 denote the Ln2-inner product as

⟨v, w⟩ :=

∫
∞

0
v(t)Tw(t) dt

Define the truncation operator (PTv)(t) := v(t) for t ≤ T ;
(PTv)(t) := 0 for t > T , and the extended function space

Ln2e := {v : [0, ∞) → Rn
| PTv ∈ L2, ∀T ∈ [0, ∞)}.

In what follows, the superscript n will often be suppressed for no-
tational simplicity. Throughout this paper a systemwill be specified
by an input–output map ∆ : Lm2e → Lp2e satisfying ∆(0) = 0.

Define for any τ ≥ 0 the right shift operator (Sτ (u))(t) = u(t−τ )
for t ≥ τ and (Sτ (u))(t) = 0 for 0 ≤ t < τ . The system ∆ is said
to be time-invariant if Sτ∆ = ∆Sτ for all τ > 0. Furthermore, the
system ∆ is bounded if ∆ maps Lm2 into Lp2. It is said to have L2-gain
≤ γ for some γ > 0 (finite L2-gain) if

∥PT∆(u)∥2 ≤ γ ∥PTu∥2 (1)

for all u ∈ Lm2e and all T ≥ 0. The infimum of all γ satisfying (1) is
called the L2-gain of ∆. The system ∆ is causal if PT∆PT = PT∆
for all T ≥ 0. It is well-known, see e.g. van der Schaft (2017,
Proposition 1.2.3), that a causal system ∆ has finite L2-gain if and
only if, instead of (1),

∥∆(u)∥2 ≤ γ ∥u∥2 (2)

for all u ∈ Lm2 . For the purpose of interconnection of systems the
above notions are generalized frommaps to relations R ⊂ Lm2e × Lp2e
satisfying (0, 0) ∈ R as follows van der Schaft (2017). A relation R
is said to be bounded if whenever (u, y) ∈ R and u ∈ L2 then also
y ∈ L2. Furthermore, R has finite L2-gain if

∥PTy∥2 ≤ γ ∥PTu∥2 (3)

Fig. 1. Feedback configuration.

for all (u, y) ∈ R and all T ≥ 0. Also, R is said to be causal if
whenever (u1, y1) ∈ R, (u2, y2) ∈ R satisfy PTu1 = PTu2, then
PTy1 = PTy2. A causal relation R has finite L2-gain if and only if
instead of (3),

∥y∥2 ≤ γ ∥u∥2 (4)

for all L2 pairs (u, y) ∈ R. The system ∆ : Lm2e → Lm2e (i.e., p = m) is
said to be passive (Vidyasagar, 1981; Willems, 1972) if∫ T

0
u(t)T (∆(u))(t) dt ≥ 0, (5)

for all u ∈ L2e, T > 0. Furthermore, it is called strictly passive if
there exist δ > 0, ϵ > 0 such that∫ T

0
u(t)T (∆(u))(t) dt ≥ δ∥PTu∥2

2 + ϵ∥PT∆(u)∥2
2

for all u ∈ L2e, T > 0, and output strictly passive if this holds
with δ = 0. In case ∆ is bounded and causal, then passivity is
equivalent (van der Schaft, 2017, Proposition 2.2.5) to∫

∞

0
u(t)T (∆(u))(t) dt ≥ 0 (6)

for all u ∈ Lm2 . (Note that the integral is well-defined because of
boundedness of ∆ and the Cauchy–Schwarz inequality.) Similarly,
in this case ∆ is strictly passive if there exist δ > 0, ϵ > 0 such that∫

∞

0
u(t)T (∆(u))(t) dt ≥ δ∥u∥2

2 + ϵ∥∆(u)∥2
2 ∀u ∈ Lm2 , (7)

and output strictly passive if this holds with δ = 0. For later use we
also recall the basic property that any output strictly passive sys-
tem has finite L2-gain; cf. van der Schaft (2017, Theorem 2.2.13).
Like in the L2-case these passivity notions are directly extended to
relations R ⊂ Lm2e × Lm2e satisfying (0, 0) ∈ R. Indeed, R is called
strictly passive if there exist δ > 0, ϵ > 0 such that for all2
(u, y) ∈ R, T > 0∫ T

0
u(t)Ty(t) dt ≥ δ∥PTu∥2

2 + ϵ∥PTy∥2
2, (8)

and output strictly passive if this holds with δ = 0. Furthermore,
a bounded causal relation R is strictly passive if there exist δ >
0, ϵ > 0 such that for all (u, y) ∈ R∫

∞

0
u(t)Ty(t) dt ≥ δ∥u∥2

2 + ϵ∥y∥2
2, (9)

and output strictly passive if this holds with δ = 0.
The main object of study in this paper is the feedback intercon-

nection of two systems Σ1 : Lm1
2e → Lp12e and Σ2 : Lm2

2e → Lp22e , with
m1 = p2,m2 = p1, described by (see Fig. 1)

u1 = e1 − y2, u2 = e2 + y1,
y1 = Σ1(u1), y2 = Σ2(u2).

(10)

2 Throughout it is assumed that all integrals are well-defined.
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