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a b s t r a c t

This paper considers the learning consensus problem for heterogenous high-order nonlinear multi-agent
systems with output constraints. The dynamics consisting of parameterized and lumped uncertainties
is different among different agents. To solve the consensus problem under output constraints, two
distributed control protocols are designedwith the help of a novel barrier Lyapunov function,which drives
the control updating and parameters learning. Both convergence analysis and constraint satisfaction are
strictly proved by the barrier composite energy function approach. Illustrative simulations are provided
to verify the effectiveness of the proposed protocols.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades,multi-agent system (MAS) coordination and
control problems have attracted much attention from the control
community.Much progress has emerged in formation control, syn-
chronization, flocking, swarm tracking, and containment control
among others. For these problems, the consensus framework is
an effective approach (Cao, Yu, Ren, & Chen, 2013). The setting of
a consensus problem involves triple components, namely, agent
model, information exchange topology, and distributed consensus
algorithm, respectively. For the agent model, the existing results
cover single integrator model (Olfati-Saber & Murray, 2004; Ren,
Beard, & Atkins, 2007), double integrator model (Hong, Hu, &
Gao, 2006; Ren, 2008; Zhang & Tian, 2009), high-order integrator
model (Cui & Jia, 2012), linear system (Scardovi & Sepulchre, 2009;
Yu & Wang, 2014), and nonlinear system (Chen & Lewis, 2011;
Mehrabian & Khorasani, 2016; Mei, Ren, & Ma, 2011). Moreover,
the information exchange topology, described by a graph, has been
thoroughly developed in the existing literature (Fang & Antsaklis,
2006; Tahbaz-Salehi & Jadbabaie, 2008). Last, the consensus al-
gorithm is important to generate complex group-level behaviors
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using simple local coordination rules, which are highly related to
practical problems (Khoo, Xie, & Man, 2009; Ren & Beard, 2008;
Yang, Tan, & Xu, 2013).

Iterative learning control (ILC) is a matured intelligent con-
trol technique to achieve high precision tracking performance by
the inherent repetition mechanism (Ahn, Chen, & Moore, 2007;
Shen & Wang, 2014; Xu, 2011). Therefore, the ILC strategy has
been applied for MASs to achieve learning consensus recently.
Ahn and Chen (2009) proposed the first result on formation con-
trol using the learning strategy. Later, the reports on satellite
trajectory-keeping (Ahn, Moore, & Chen, 2010), mobile robots for-
mation (Chen& Jia, 2010), and coordinated train trajectory tracking
(Sun, Hou, & Li, 2013) illustrate successful applications of ILC to
MASs. For theoretical research, Yang, Xu, Huang, and Tan (2014,
2015) employed the contractionmappingmethod for convergence
analysis of affine nonlinear MASs. The 2D system technique was
used to prove the consensus performance in Meng, Jia, and Du
(2013, 2015, 2016) andMeng andMoore (2016) for linear systems.
The Lyapunov function method was introduced in Li and Li (2013,
2015, 2016) for MASs where agents were of first-order, second-
order andhigh-ordermodels, respectively. Yang andXu (2016) also
provided a composite energy function (CEF) based analysis for net-
worked Lagrangian systems. While various techniques have been
developed for the ILC-basedMAS consensus, the existing literature
mainly focuses on the conventional system setting without any
constraint on the system output.

However, when concerning MASs in the real world, it is
found that nearly almost all real systems are subject to certain
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constraints. The constraints arise for the output due to various
practical limitations and safety considerations. If we ignore such
constraints and conduct the conventional control strategy, the sys-
tem output may be beyond the tolerant range and lead to serious
problems. For example, a platoon of auto-vehicles is a typical MAS,
in which the vehicles are required to stay in a regulated range and
run within the speed limit all the time. Consequently, when up-
dating the control signal, we should always take these constraints
into consideration in order to guarantee a safe drive. Otherwise,
traffic accidentswould arise for the automatic drive if the vehicle is
either out of the road range or over the speed limit. Moreover, due
to the physical limitation of wireless networks, there usually exists
an upper bound of communication bandwidth in MASs; therefore,
the output of each agent should fall in a specified range so that
the transmitted data would not exceed the maximal bandwidth.
In addition, in consideration of implementation cost, simple and
cheap measurement devices are widely used in industrial and au-
tomation systems,whichmay only provide a limitedmeasurement
range. In such case, the agent output is required not to exceed
the range; otherwise, the output is difficult to measure and then
the update cannot proceed. From these observations, we note
that the output of each agent in a MAS generally has to satisfy
certain constraints, which has not been considered in the existing
literature. Once the output constraints are required, it is a natural
question how to design and analyze the learning update laws for
MASs. This problem motivates the research of this paper. In this
paper, we try to propose distributed learning protocols to achieve
asymptotical consensus along the iteration axis and guarantee the
output constraints simultaneously.

To this end,we apply the idea of barrier Lyapunov function (BLF)
similar to Jin and Xu (2013) and Xu and Jin (2013) to handle the
output constraints problem. Differing from Jin and Xu (2013) and
Xu and Jin (2013), we introduce a general type of BLF and apply it to
the design of distributed learning protocols for heterogenous high-
order nonlinearMASs. In particular, for aMASwhere the dynamics
of each agent consists of parameterized and lumped uncertainties,
we first define a group of auxiliary functions based on the newly
introduced BLF and then apply these functions in the design of
the protocols. In this paper, two control protocols are designed.
The first one introduces sign functions of the involved quantities
to regulate control compensation so that the zero-error asymp-
totical consensus is achieved while satisfying output constraints.
However, such protocol may cause chattering problem due to
the frequent sign switching. To facilitate practical applications,
we further propose the second control protocol, where the sign
function is approximated by a hyperbolic tangent function. In such
case, we only guarantee the bounded convergence performance;
however, we present a precise estimation of the upper bound,
which can help to tune the protocol parameters for a specified
consensus performance. We note that Li and Li (2013, 2015, 2016)
also applied the CEF method for learning consensus problem. Our
paper differs from Li and Li (2013, 2015, 2016) in three aspects:
(1) we concentrate on the consensus under output constraints and
introduce a general BLF; (2) we provide practical alternative of the
algorithm implementations; and (3) we employ distinct analysis
techniques.

The rest of the paper is arranged as follows. Section 2 pro-
poses the problem formulation and the general barrier Lyapunov
function. Section 3 presents two control protocols and the main
theorems, whose proofs are put in the Appendix. Section 4 gives
illustrative simulations on an engineering system. Section 5 con-
cludes this paper.

Notations: G = (V , E ) is a weighted graph. V = {v1, . . . , vN}

is a nonempty set of nodes/agents, where N is the number of
nodes/agents. E ⊆ V × V is the set of edges/arcs. (vi, vj) ∈ E

indicates that agent j can get information from agent i. A =

[aij] ∈ RN×N denotes the topology of a weighted graph G . aij is
the weighted value, and aij = 1 if (vi, vj) ∈ E , otherwise aij = 0.
In addition, aii = 0, 1 ≤ i ≤ N . di =

∑N
j=1aij is the in-degree

of agent i. D = diag{d1, . . . , dN} is the in-degree matrix. L =

D − A is the Laplacian matrix of a graph G . Ni denote the set
of all neighborhoods of ith agent, where an agent vj is said to be
a neighborhood of agent vi if vi can get information from vj. An
agent does not belong to its neighborhood. εj denote the access of
jth agent to the desired trajectory, that is, εj = 1 if agent vj has
direct access to the full information of desired trajectory, otherwise
εj = 0. ∥x∥ denotes the Euclidean norm for a vector x.

2. Problem formulation

Consider a heterogeneous MAS formulated by N (N > 2)
agents, where the jth agent is modeled by the following high-order
nonlinear system

ẋi,j,k = xi+1,j,k, i = 1, . . . , n − 1,

ẋn,j,k = θ T
j (t)ξj,k(t) + bj,k(t)uj,k + ηj,k(t),

yj,k = {x1,j,k, x2,j,k},

(1)

where i = 1, 2, . . . , n denotes the ith dimension of state, j =

1, 2, . . . ,N denotes the agent, and k = 1, 2, . . . is the iteration
number. Denote the state of the jth agent at the kth iteration as
xj,k ≜ [x1,j,k, . . . , xn,j,k]T . θ T

j (t)ξj,k(t) is the parametric uncertainty,
where θj(t) is an unknown parameter vector of the jth agent,
which is continuous and bounded on the operation interval [0, T ],
while ξj,k(t) ≜ ξj(xj,k, t) is a known time-varying vector-function.
bj,k(t) ≜ bj(xj,k, t) is the unknown time-varying control gain.
ηj,k(t) ≜ ηj(xj,k, t) is the unknown lumped uncertainty with a
known upper bounded function |ηj(xj,k, t)| ≤ ρ(xj,k, t). In the
following, denote ξj,k ≜ ξj(xj,k, t), bj,k ≜ bj(xj,k, t), ηj,k ≜ ηj(xj,k, t),
and ρj,k ≜ ρ(xj,k, t) where no confusion arises. The system output
yj,k = {x1,j,k, x2,j,k} can be either x1,j,k or x2,j,k or both, but cannot be
varying. For the high-order system, it is required that the outputs
should satisfy the given boundedness constraints.

Remark 1. The agent model (1) was also investigated in Li and Li
(2016), where the input gain is set to be one and the lumped uncer-
tainty is bounded by a constant. The model (1) for a single system
was also considered in Jin and Xu (2013), where the lumped un-
certainty is assumed to be variation-norm-bounded. In such case,
the tracking reference is assumed to take the same structure of the
system model. In this paper, all these requirements are removed.
In addition, the model (1) represents a wide range of system un-
certainties, as the neural networks and fuzzy approximation-based
transformations of general nonlinear systems usually conform to
this model.

Let the desired trajectory (virtual leader) be xr , xr ≜ [x1,r , . . . ,
xn,r ]T satisfying that ẋi,r = xi+1,r , 1 ≤ i ≤ n − 1 and ẋn,r = f (t, xr )
with bounded f (t, xr ).

The following assumptions are required for analysis.

A1 Assume that the input gain bj,k does not change its sign.
Meanwhile, it has lower and upper bounds. That is, we
assume 0 < bmin ≤ bj,k ≤ bmax, where bmin is known.

A2 Each agent satisfies the alignment condition, xj,k(0) = xj,k−1
(T ). In addition, the desired trajectory is spatially closed, that
is, xr (0) = xr (T ).

Remark 2. In the conventional ILC literature, the so-called identi-
cal initialization condition (i.i.c.), i.e., xj,k(0) = xr (0) for all agents
and iterations, is the most common assumption for iteration re-
initialization. However, this condition is difficult to satisfy for
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