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a b s t r a c t

In this paper, we develop an energy-based static and dynamic control framework for stochastic port-
controlled Hamiltonian systems. In particular, we obtain constructive sufficient conditions for stochastic
feedback stabilization that provide a shaped energy function for the closed-loop systemwhile preserving a
Hamiltonian structure at the closed-loop level. In the dynamic control case, energy shaping is achieved by
combining the physical energy of the plant and the emulated energy of the controller. Several numerical
examples are presented that demonstrate the efficacy of the proposed passivity-based stochastic control
framework.
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1. Introduction

In numerous applications where dynamical system models are
used to describe the behavior of natural and engineering systems,
stochastic components and random disturbances are typically in-
corporated into the models. The stochastic aspects of the models
are used to quantify system uncertainty and system disturbances
aswell as the dynamic relationships of sequences of randomevents
between system–environment interactions. In the recent papers
by Rajpurohit and Haddad (2016, 2017), the authors extend classi-
cal deterministic dissipativity theory (Willems, 1972) to nonlinear
stochastic dynamical systems using basic input–output and state
properties. Specifically, a stochastic version of dissipativity theory
using both an input–output as well as a state dissipation inequality
in expectation for controlled Markov diffusion processes is pre-
sented.

Dissipativity theory and in particular passivity-based control
frameworks for deterministic port-controlled Hamiltonian sys-
tems using energy shaping have been developed in the liter-
ature. Specifically, Ortega, van der Schaft, and Maschke (1999)
and Ortega, van der Schaft, Maschke, and Escobar (2002a, 1999)
develop a control design methodology that achieves stabilization
via system passivation. In light of the fact that energy notions
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involving conservation, dissipation, and transport of energy also
arise naturally for dissipative diffusion processes, it seems natural
that dissipativity theory can play a key role in the control design of
stochastic dynamical systems. Specifically, stochastic dissipativity
and passivity theory can be used to design feedback controllers
that add dissipation and guarantee stability robustness in proba-
bility allowing stochastic stabilization to be understood in physical
terms.

In this paper, we use the stochastic stability and dissipa-
tivity framework developed in Rajpurohit and Haddad (2016,
2017), to extend the deterministic passivity-based control frame-
work for port-controlled Hamiltonian systems of Ortega, van der
Schaft and Maschke (1999), Ortega and van der Schaft (2002) and
Ortega, van der Schaft, Maschke and Escobar (1999) to nonlin-
ear stochastic port-controlled Hamiltonian systems. Specifically,
an energy-based control framework for stochastic port-controlled
Hamiltonian systems is developed using a stochastic controller de-
sign methodology that achieves stabilization via stochastic system
passivation. The interconnection and damping matrix functions of
the stochastic port-controlled Hamiltonian system are shaped so
that the physical (Hamiltonian) system structure is preserved at
the closed-loop level and the closed-loop average energy function
is equal to the difference between the average physical energy of
the systemand the average energy supplied by the controller. Since
the Hamiltonian structure is preserved at the closed-loop level, the
passivity-based stochastic controller is robust with respect to un-
modeled passive dynamics. Passivity-based control architectures
are extremely appealing since the control action has a clear physical
energy interpretation, which can considerably simplify controller
implementation.
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Finally, we consider energy-based dynamic controllers for
stochastic port-controlled Hamiltonian systems, wherein energy
shaping is achieved by combining the physical energy of the plant
and the emulated energy of the feedback controller. For deter-
ministic systems, this approach has been extensively studied by
Ortega, Loria, Kelly, and Praly (1995) and Ortega, Loria, Nicklas-
son, & Sira-Ramirez (1998) to design Euler–Lagrange controllers
for potential energy shaping of mechanical systems. The efficacy
of the proposed framework is highlighted on several illustrative
numerical examples involving an inverted pendulum and a pair of
undamped coupled oscillators.

2. Notation, definitions, and mathematical preliminaries

In this section, we establish notation, definitions, and review
some basic results on stability of nonlinear stochastic dynami-
cal systems (Arnold, 1974; Khasminskii, 2012; Øksendal, 1995).
Specifically, R denotes the set of real numbers, Rn denotes the set
of n × 1 real column vectors, and Rn×m denotes the set of n × m
real matrices. We write Bε(x) for the open ball centered at x with
radius ε, ∥ · ∥ for the Euclidean vector norm or an induced matrix
norm (depending on context), ∥ ·∥F for the Frobenius matrix norm,
AT for the transpose of thematrix A, and In or I for the n×n identity
matrix.

We define a complete probability space as (Ω, F ,P), where Ω

denotes the sample space, F denotes a σ -algebra, and P defines
a probability measure on the σ -algebra F ; that is, P is a non-
negative countably additive set function on F such that P(Ω) =

1 (Arnold, 1974). Furthermore,we assume thatw(·) is a standard d-
dimensional Wiener process defined by (w(·), Ω, F ,Pw0 ), where
Pw0 is the classical Wiener measure (Øksendal, 1995 p. 10), with
a continuous-time filtration {Ft}t≥0 generated by the Wiener pro-
cessw(t) up to time t . We denote a stochastic dynamical system by
G generating a filtration {Ft}t≥0 adapted to the stochastic process
x : R+ × Ω → D on (Ω, F ,Px0 ) satisfying Fτ ⊂ Ft , 0 ≤ τ < t ,
such that {ω ∈ Ω : x(t, ω) ∈ B} ∈ Ft , t ≥ 0, for all Borel sets
B ⊂ Rn contained in the Borel σ -algebra Bn. Here we use the
notation x(t) to represent the stochastic process x(t, ω) omitting
its dependence on ω.

Finally, wewrite tr(·) for the trace operator, (·)−1 for the inverse
operator, V ′(x) ≜ ∂V (x)

∂x for the Fréchet derivative of V at x, V ′′(x) ≜
∂2V (x)
∂x2

for the Hessian of V at x, and Hn for the Hilbert space of
random vectors x ∈ Rn with finite average power, that is, Hn ≜
{x : Ω → Rn

: E[xTx] < ∞}, where E denotes expectation. For
an open set D ⊆ Rn, H D

n ≜ {x ∈ Hn : x : Ω → D} denotes
the set of all the random vectors in Hn induced by D. Similarly, for
every x0 ∈ Rn, H x0

n ≜ {x ∈ Hn : x a.s.
= x0}. Furthermore, C2 denotes

the space of real-valued functions V : D → R that are two-times
continuously differentiable with respect to x ∈ D ⊆ Rn.

Consider the nonlinear stochastic dynamical system G given by

dx(t) = f (x(t))dt + D(x(t))dw(t), x(t0)
a.s.
= x0, t ≥ t0, (1)

where, for every t ≥ 0, x(t) ∈ H D
n is a Ft-measurable random

state vector, x(t0) ∈ H
x0
n , D ⊆ Rn is an open set with 0 ∈

D , w(t) is a d-dimensional independent standard Wiener process
(i.e., Brownian motion) defined on a complete filtered probability
space (Ω, {Ft}t≥t0 ,P), x(t0) is independent of (w(t) − w(t0)), t ≥

t0, and f : D → Rn and D : D → Rn×d are continuous functions
and satisfy f (xe) = 0 andD(xe) = 0 for some xe ∈ D . An equilibrium
point of (1) is a point xe ∈ D such that f (xe) = 0 and D(xe) = 0. It
is easy to see that xe is an equilibrium point of (1) if and only if the
constant stochastic process x(·) a.s.

= xe is a solution of (1).
Here, we assume that f : D → Rn and D : D → Rn×d satisfy

the uniform Lipschitz continuity condition

∥f (x) − f (y)∥ + ∥D(x) − D(y)∥F ≤ L∥x − y∥, x, y ∈ D, (2)

and the growth restriction condition

∥f (x)∥2
+ ∥D(x)∥2

F ≤ L2(1 + ∥x∥2), x ∈ D, (3)

for some Lipschitz constant L > 0, and hence, since x(t0) ∈ H D
n

and x(t0) is independent of (w(t) − w(t0)), t ≥ t0, it follows
that there exists a unique solution x ∈ L 2(Ω, F ,P), where
L 2(Ω, F ,P) denotes the set of equivalence class of measurable
and square-integrable Rn valued random processes on (Ω, F ,P)
over semi-infinite parameter space [0, ∞), to (1) in the following
sense. For every x ∈ H D

n \ {0} there exists Tx > 0 such that if
x1 : [t0, τ1] × Ω → D and x2 : [t0, τ2] × Ω → D are two
solutions of (1); that is, if x1, x2 ∈ L 2(Ω, F ,P) with continuous
sample paths almost surely solve (1), then Tx ≤ min{τ1, τ2} and
P
(
x1(t) = x2(t), t0 ≤ t ≤ Tx

)
= 1.

The following definitions introducing the notions of Lyapunov
and asymptotic stability in probability along with positive invari-
ance of a Borel set with respect to (1) are needed.

Definition 1 (Khasminskii, 2012). (i) The equilibrium solution
x(t)

a.s.
≡ xe to (1) is Lyapunov stable in probability if, for every ε > 0

and ρ ∈ (0, 1), there exist δ = δ(ρ, ε) > 0 such that, for all
x0 ∈ Bδ(xe),

Px0

(
sup
t≥t0

∥x(t) − xe∥ > ε

)
≤ ρ. (4)

(ii) The equilibrium solution x(t)
a.s.
≡ xe to (1) is asymptotically

stable in probability if it is Lyapunov stable in probability and there
exists δ > 0 such that if x0 ∈ Bδ(xe), then

lim
x0→xe

Px0
(
lim
t→∞

∥x(t) − xe∥ = 0
)

= 1. (5)

(iii) The equilibrium solution x(t)
a.s.
≡ xe to (1) is globally asymptoti-

cally stable in probability if it is Lyapunov stable in probability and,
for all x0 ∈ Rn,

Px0
(
lim
t→∞

∥x(t) − xe∥ = 0
)

= 1. (6)

Definition 2 (Mao, 1999). An open set D ⊂ Rn is said to be
positively invariant with respect to (1) if it is Borel and, for all x0 ∈ D,
Px0 (x(t) ∈ D) = 1, t ≥ t0.

Finally, we provide sufficient conditions for local and global
asymptotic stability in probability for the nonlinear stochastic
dynamical system (1). First, however, recall that the infinitesimal
generator L of x(t), t ≥ 0, with x(0) a.s.

= x0, is defined by

L V (x0) ≜ lim
t→0+

Ex0 [V (x(t))] − V (x0)
t

, x0 ∈ D, (7)

where Ex0 denotes the expectation with respect to the transition
probability measure Px0 (x(t) ∈ D) ≜ P(t0, x0, t,D) (Øksendal,
1995 Def. 7.7). If V ∈ C2 and has a compact support, and x(t),
t ≥ 0, satisfies (1), then the limit in (7) exists for all x ∈ D and the
infinitesimal generator L of x(t), t ≥ 0, can be characterized by
the system drift and diffusion functions f (x) and D(x) defining the
stochastic dynamical system (1) and is given by (Øksendal, 1995
Thm. 7.9)

L V (x) ≜
∂V (x)
∂x

f (x) +
1
2
tr DT(x)

∂2V (x)
∂x2

D(x), x ∈ D. (8)

Theorem 3 (Khasminskii, 2012, Thm. 5.3, Cor. 5.1, Thm. 5.11). Con-
sider the nonlinear stochastic dynamical system (1) and assume that
there exists a two-times continuously differentiable function V : D →

R such that

V (xe) = 0, (9)



Download English Version:

https://daneshyari.com/en/article/11003542

Download Persian Version:

https://daneshyari.com/article/11003542

Daneshyari.com

https://daneshyari.com/en/article/11003542
https://daneshyari.com/article/11003542
https://daneshyari.com

