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a b s t r a c t

In model-based diagnosis there are often more candidate residual generators than what is needed and
residual selection is therefore an important step in the design of model-based diagnosis systems. The
availability of computer-aided tools for automatic generation of residual generators have made it easier
to generate a large set of candidate residual generators for fault detection and isolation. Fault detection
performance varies significantly between different candidates due to the impact of model uncertainties
and measurement noise. Thus, to achieve satisfactory fault detection and isolation performance, these
factors must be taken into consideration when formulating the residual selection problem. Here, a
convex optimization problem is formulated as a residual selection approach, utilizing both structural
information about the different residuals and training data from different fault scenarios. The optimal
solution corresponds to aminimal set of residual generators with guaranteed performance. Measurement
data and residual generators from an internal combustion engine test-bed is used as a case study to
illustrate the usefulness of the proposed method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A model-based diagnosis system is typically based on a set of
residual generators, sometimes referred to asmonitors, to detect if
faults have occurred or not (Blanke, Kinnaert, Lunze, Staroswiecki,
& Schröder, 2006). Each residual generator is designed to monitor
a specific part of the system and then, based on which residuals
that trigger, a set of diagnosis candidates (fault hypotheses) can be
computed (Cordier et al., 2004).

There are two main motivational observations for this work.
First, the number of possible residual generator candidates in
general grows exponentially with the degree of redundancy of
the model (Krysander, Åslund, & Nyberg, 2008). This means that
in many cases there are significantly more candidates possible
than what is needed to detect and isolate the faults. A second
observation is that in realistic scenarios all candidate residual
generators do not perform equally well, mainly due to the inherent
uncertainties in the model and measurement noise. Fig. 1 shows a
typical situation with a set of residuals that are all sensitive to the
same fault. In an ideal case, all residuals in the plot should react

✩ Thematerial in this paper was not presented at any conference. This paper was
recommended for publication in revised formby Associate Editor Angelo Alessandri
under the direction of Editor Thomas Parisini.

* Corresponding author at: Linköping University, Linköping, Sweden.
E-mail addresses: daniel.jung@liu.se (D. Jung), erik.frisk@liu.se (E. Frisk).

in the gray regions, but clearly the detection performance varies
and some has no clear reaction at all, making them less useful
for this particular fault. Thus, selecting an appropriate subset of
residual generators is a key step in thedesignprocess to ensure that
satisfactory detection and isolation performance can be achieved
at low computational cost.

Even though residual selection is important to achieve satis-
factory fault detection and isolation performance, it has received
relatively little attention compared to other steps in the model-
based diagnosis system design, e.g., sensor selection (Bhushan
& Rengaswamy, 2000; Krysander & Frisk, 2008; Nejjari, Sarrate,
& Rosich, 2010) and residual generator design (Basseville, 1997;
Frank & Ding, 1997; Venkatasubramanian, Rengaswamy, Yin, &
Kavuri, 2003). In previous works, for example Nejjari et al. (2010),
Perelman, Abbas, Koutsoukos, and Amin (2016) and Svärd, Nyberg,
and Frisk (2013), the residual generators are assumed ideal when
formulating the residual selection problem. Residual selection by
optimization has been proposed in Nejjari et al. (2010) using a
Binary Integer Linear Programming approach, in Svärd et al. (2013)
using a greedy heuristic, and in adaptive on-line solutions in
Chanthery, Travé-Massuyès, and Indra (2016); Krysander, Heintz,
Roll, and Frisk (2010), also here assuming ideal performance. A
main limitation with these methods is that quantitative residual
performance is not taken into consideration in the residual selec-
tion process, i.e., assuming that the detection performance of all
residuals in Fig. 1 are equal which is clearly not the case.
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Fig. 1. A comparison of residuals sensitive to the same fault but with different
detection performance. The gray-shaded intervals indicatewhere the fault is active.

Themain property to consider in the selection process is robust-
ness in the detector with respect to model uncertainties and noise.
One approach would be to model noise and model uncertainty
using, e.g., probabilistic methods, see for example Eriksson, Frisk,
and Krysander (2013) and Wheeler (2011). However, in general
this is difficult unless uncertainties are well modeled by stationary
random processes. The approach adopted here is to let measured
data model the uncertainties and the effects of different faults.

Residual selection is closely related to the feature selection
problem inmachine learning (Chandrashekar & Sahin, 2014; Fried-
man, Hastie, & Tibshirani, 2009; Guyon & Elisseeff, 2003). Differ-
ent feature selection algorithms for data-driven fault diagnosis
have been proposed, for example Jegadeeshwaran and Sugumaran
(2015) and Jiang, Yan, and Huang (2016). Performance of feature
selection algorithms depends on the quality of available training
data (Tidriri, Chatti, Verron, & Tiplica, 2016). Collecting representa-
tive data from different faults is time-consuming, costly, and often
infeasible since it is not known exactly how different faults man-
ifest. This means that available data from different faults is often
limited and not representative of all fault scenarios (Sankavaram,
Kodali, Pattipati, & Singh, 2015) and then a data-driven classifier
trained on this data is not expected to achieve reliable performance
(Tidriri et al., 2016) for new fault manifestations and sizes.

In Jung and Sundström (2017), a residual selection algorithm is
proposed which uses information from both models and training
data. The residual selection problem is there solved as a set of
separate optimization problems, one for each requirement. This
univariate approach is clearly suboptimal and a main contribution
here is that all performance requirements are solved simultane-
ously in one optimization problem. This means smaller solution
sets since the residual selection algorithm can identify residuals
that fulfill multiple requirements and utilizes residual correlations.

A main contribution here is the formulation of a residual
selection problem, combiningmodel-based and data-drivenmeth-
ods, as a convex optimization problem, which can be solved ef-
ficiently using general-purpose solvers. A key contribution is the
re-formulation of the inherently multi-objective problem as a sin-
gle optimization problem that finds a set of residual generators
given all performance requirements. It is assumed that training
data is available from all relevant fault modes and, most impor-
tantly, it is also assumed that data is limited and not representative
of all realizations of each fault. A main contribution of this work
is systematic utilization of the analytic model in the data-driven
feature selection process, alleviating the fundamental problem
of limited training data from different fault scenarios. The pro-
posed residual selection algorithmcanhandle both single-fault and
multiple-fault isolation. To illustrate the proposed algorithm, it is
applied to a real industrial use-case with data from an internal
combustion engine.

2. Model-based diagnosis

Before defining the residual selection problem, a summary
of some model-based diagnosis notions needed is given in this

Table 1
Fault signature matrix of residual set R∗ .

Residual fWaf fpim fpic fTic
r2 X X
r19 X X
r26 X X
r27 X X
r29 X
r30 X

section. Structural properties of residual generators are defined
which will be used to formulate the fault isolability constraints
in the residual selection problem. An ideal residual generator is
defined as

Definition 1 (Ideal Residual Generator). An ideal residual generator
rk(z) for a given system is a function of sensor and actuator data
z where a fault-free system implies that the residual output rk(z)
= 0.

An ideal residual generator rk(z) is said to be sensitive to a fault fi if
there exists a realization of the fault that implies that the residual
output rk(z) ̸= 0 (Svärd et al., 2013). Information about which set
of faults each residual is sensitive to can be summarized in a Fault
Signature Matrix (FSM). An example is shown in Table 1 where a
mark at position (k, l) means that residual rk is sensitive to fault fl.
A fault fl is said to be decoupled in rk if the residual is not sensitive
to that fault.

Instead of discussing single-faults andmultiple-faults, the term
fault-mode is used to describe the system state. A fault mode Fi ⊆

F describes which faults that are present in the system and the
no-fault case Fi = ∅ is denoted NF. Based on fault modes, the
following definition of fault detectability and isolability will be
used to formulate the residual selection problem (Svärd et al.,
2013).

Definition 2 (Fault Detectability and Isolability). Let R ⊆ Rall
denote a set of residual generators. A fault mode Fi is detectable
inR if there exists a residual rk ∈ R that is sensitive to at least one
fault fi ∈ Fi. A fault mode Fi is isolable from another fault mode Fj
if there exists a residual rk ∈ R that is sensitive to at least one fault
fi ∈ Fi but not any fault fj ∈ Fj.

To determine if any of the residuals has deviated from its nominal
behavior, different test quantities are used, such as thresholded
residuals or cumulative sum (CUSUM) tests (Page, 1954).

3. Problem formulation

A first thing to observe is that for a given model there can
be many possible residual generators. In general, the number of
candidates grows exponentially with the degree of model redun-
dancy (Krysander et al., 2008). To illustrate this, consider the small
example

x = g(u), yi = x, i = 1, . . . , n

where u is a known control input and there are n measurements
of the unknown variable x. With n = 1 there is only one possible
residual generator, i.e., r = y1 − g(u), but with an increasing n
the number of possibilities increases. It is straightforward to realize
that the number of residual generators based on aminimal number
of equations is given by

|{minimal residual generators}| =

(
n + 1
2

)
since any pair of two equations, from the set of n+1 equations, can
be used to compute a residual. This simple observation generalizes
to more general models (Krysander et al., 2008).
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