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a b s t r a c t

This paper investigates the moving robot localisation problem using a Doppler–Azimuth radar array.
The solution is formulated in the framework of nonlinear/non-Gaussian estimation using a particle filter
and a random finite set (RFS) model of measurements. The proposed approach assumes the availability
of a feature-based map, radar measurements and robot odometry data. The associations between the
measurements and the features of the map (landmarks) are unknown. The RFS model is adopted to
deal with false and missed detections and uses Murty’s algorithm to reduce computation when solving
the association problem. The proposed particle filter incorporates the Kullback–Leibler Distance (KLD)-
Sampling to reduce computational time. Monte-Carlo simulation results demonstrate the efficacy of the
proposed algorithm.

Crown Copyright© 2018 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Successful deployment of a mobile robot requires the ability to
localise and orient itself as it moves through an environment. In
this paper we consider robotic applications where satellite navi-
gation is not available, such as indoor, underground, undersea or
extraterrestrial environments. Furthermore, the sensor available
for robot navigation is a Doppler radar. Since frequency measure-
ments can be easily obtained at low cost and with high accuracy,
Doppler radars have the advantage over traditional robot naviga-
tion sensors: they are cheaper and lighter than LIDAR sensors, and
potentially have a greater range than both LIDAR and ultrasound
sensors. However, using Doppler shifts for navigation is difficult,
because of the poor information content of such measurements.

In the past, Doppler-shift frequencies have been used for the
purpose of target localisation and tracking (Battistelli, Chisci, Fan-
tacci, Farina, & Graziano, 2015; Ristic & Farina, 2013; Shames,
Bishop, Smith, & Anderson, 2013). The problem of robot navigation
using Doppler-shift frequencies is novel and very different from
target tracking. The robot, equipped with a Doppler radar, has to
estimate its own position and heading (also known as the robot
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pose) using the measured Doppler-shifts. The Doppler-shift on the
transmitted radar wave occurs due to the movement of a robot
relative to the static features (landmarks) at known locations. The
paper builds on our previous work (Guan, Ristic, Wang, Moran, &
Evans, 2016). In particular, it relaxes the following assumptions
made in Guan et al. (2016): knowledge of the robot’s initial pose
distribution, perfect Doppler radar detection and known landmark
to measurement associations.

The main feature of the proposed method is that it is based on
the particle filter and models the measurements at each scan as
random finite sets (Mahler, 2007). A collective term for particle-
filter based robot navigation algorithms isMonte Carlo localisation
(MCL) (Kootstra & De Boer, 2009; Liu, Shi, Zhao, & Xu, 2008; Thrun,
Fox, Burgard, &Dellaert, 2001). The novelty of ourMCL algorithm is
that it is using realistic Doppler radarmeasurements, characterised
by false and missed detections as well as poor accuracy of azimuth
measurements. The RFS modelling allows us to formulate robot
localisation as a particle filter which can elegantly deal with false
and missed radar detections. RFS models have previously been
used for feature-based simultaneous localisation and mapping
(SLAM) using range-azimuthmeasurements (Adams, Vo,Mahler, &
Mullane, 2014). While in this paper we focus on robot localisation
only (i.e. the feature-based map is assumed known), the solution
is proposed for less informative measurements of Doppler-shifts
and azimuth. The theoretical formulations of a general RFS particle
filter can be found in Ristic (2013) and Vo, Singh, and Doucet
(2005).

The RFS particle filter that we propose incorporates Murty’s
algorithm (Murty, 1968) along with the Kullback–Leibler Distance
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(KLD)-Sampling algorithm (Fox, 2003) to reduce computational
time. The assumptions are that a feature-based map is known and
that the robot odometry data are available. In summary, this paper
includes the following contributions: (a) application of RFS particle
filters to mobile robot localisation on a feature-based map with a
Doppler radar; (b) realistic Doppler radar measurements modelled
with false and missed-detections and unknown measurement-to-
landmark association; (c) incorporation of KLD-Sampling with RFS
particle filters.

The remainder of this paper is organised as follows. Section 2
introduces the robot motion model and the sensor measurement
model. Section 3 proposes a likelihood function based on RFS
modelling, followed by the RFS particle filter with KLD sampling.
Numerical simulation studies are presented in Section 4 and con-
clusions are drawn in Section 5.

2. Mathematical models

2.1. Robot motion model

The robot’s pose at discrete-time k is a vector xk = [xk, yk, θk]T ,
where (xk, yk) are Cartesian coordinates of robot location and θk
is its heading. Let the control input applied from k − 1 to k be
comprised of a translational and rotational velocity and denoted
uk = [vk, wk]T . Robot motion is described by equation (Thrun,
Burgard, & Fox, 2006, Ch.7): xk = f(xk−1,uk) + ek, where ek ∼

N (0(3×1),Qk) is the Gaussian process noise with zeromean and the
covariancematrixQk, and f(xk−1,uk) is a three-dimensional vector
with the following components:

f1(xk−1,uk) = xk−1 −
vk

wk
[sin θk−1 − sin(θk−1 + wk∆t)]

f2(xk−1,uk) = yk−1 +
vk

wk
[cos θk−1 − cos(θk−1 + wk∆t)]

f3(xk−1,uk) = θk−1 + wk∆t

∆t = tk − tk−1 is the sampling interval. The covariance matrix Qk
is approximated as (Thrun et al., 2006, Ch.7):

Qk ≈ BkDkBT
k (1)

where diagonal matrix Dk = diag(γ1v
2
k + γ2w

2
k , γ3v

2
k + γ4w

2
k )

is introduced to model noisy perturbations to the commanded
velocities. The parameters γ1, γ2, γ3, γ4 are selected by the user
to reflect the model inaccuracies in how the control vector affects
robot’s motion. Matrix Bk maps the noise from the control space to
the state space, which is defined as

Bk =
∂f(xk−1,uk)

∂uk

⏐⏐⏐⏐
xk−1,uk

=

⎡⎢⎢⎢⎢⎢⎢⎣
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(2)

where:
∂ f1
∂vk

=
1
wk

{sin(θk−1 + wk∆t) − sin θk−1}

∂ f1
∂wk

=
vk

w2
k
(sin θk−1 − sin(θk−1 + wk∆t)

+ wk∆t cos(θk−1 + wk∆t))
∂ f2
∂vk

=
1
wk

{cos θk−1 − cos(θk−1 + wk∆t)}

∂ f2
∂wk

=
vk

w2
k
(− cos θk−1 + cos(θk−1 + wk∆t)

+ wk∆t sin(θk−1 + wk∆t))

∂ f3
∂vk

= 0;
∂ f3
∂wk

= ∆t

The transition density can then be expressed as π (xk|xk−1,uk) =

N (xk; f(xk−1,uk),Qk).

2.2. Doppler radar measurement model

The (known) feature-based two-dimensional map m consists
of the Cartesian coordinates of M landmarks m(i)

=
[
x(i), y(i)

]T ,
for i = 1, 2, . . . ,M . The cardinality of a measurement set at
time k is random, because the probability of landmark detec-
tion is less than one, and spurious (false) detections (clutter) are
possible. Let the measurement set at time k be denoted Zk =[
zk,1, zk,2, . . . , zk,Lk

]T
. Thus each measurement vector z ∈ Zk

consists of the Doppler-shift frequency and the azimuth angle,
either as a return from a landmark or as a false detection. Let us
assume that clutter is a Poisson point process whose statistics are
constant both in space and time (for simplicity): its average rate is
λ and its spatial distribution is c(z). Furthermore, let the probability
of detection of a landmark m(j) be Pd(m(i)) ≤ 1, for i = 1, . . . ,M .
Specifically, the probability of detection is modelled as

Pd(m(i)) = e−β×Md
2

(3)

whereMd is the distance between the robot and the landmark and
β is a design parameter (a constant). As the distanceMd increases,
the probability of the detection Pd(m(i)) decreases.

Themeasurement equation for a true radar return zk,j ∈ Zk from
a landmark m(i) is given by

zk,j = h(xk,m(i)) + nk (4)

where h(xk,m(i)) =

[
d(i)k , φ

(i)
k

]T
, and

d(i)k = −
2fc
c

vk
{
(xk − x(i)) cos θk + (yk − y(i)) sin θk

}√
(xk − x(i))2 + (yk − y(i))2

(5)

φ
(i)
k = arctan

y(i) − yk
x(i) − xk

− θk (6)

with fc being the radar carrier frequency and c the speed of light.
Noise nk in (4) is assumed to be white zero-mean Gaussian, uncor-
related to ek. Its covariance matrix is R. The likelihood function of
a true radar detection zk,j ∈ Zk of a landmark m(i), based on (4), is
g(zk,j|xk,m(i)) = N (zk; h(xk,m(i)),R).

3. The proposed solution

3.1. Theoretical framework

Recursive pose estimation can be carried out in the Bayesian
framework through the prediction and update steps. Suppose the
posterior probability density function (PDF) of pose at time k − 1
is p(xk−1|Z1:k−1,u1:k−1), where x1:k−1 ≡ x1, x2, . . . , xk−1 and so
forth. The prediction equation, using uk and the transition density,
is given by

p(xk|Z1:k−1,u1:k) =∫
π (xk|xk−1,uk)p(xk−1|Z1:k−1,u1:k−1)dxk−1 (7)

while the update equation, using the measurement set Zk, applies
the Bayes rule:

p(xk|Z1:k,u1:k) =
ϕ(Zk|xk,m) · p(xk|Z1:k−1,u1:k)∫
ϕ(Zk|xk,m) · p(xk|Z1:k−1,u1:k)dxk

(8)
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