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a b s t r a c t

In this study, a new algorithm for explicit model predictive control of linear discrete-time systems
subject to linear constraints, disturbances, uncertainties, and actuator faults is developed. The algorithm
is based on dynamic programming, constraint rearrangement, multi-parametric programming, and a
solution combination procedure. First of all, the dynamic programming is used to recast the problem as a
multi-stage optimization problem. Afterwards, the constraints are rearranged in an innovative manner
to take into account the worst admissible situation of unknown bounded disturbances, uncertainties,
and actuator faults. Then, the explicit solution of the reformulated optimization problem for each stage
is obtained using the multi-parametric programming approaches. Finally, a recursive procedure for
combination and substitution of the solutions is presented to extract the desired explicit control law.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, considering the fact that the modern industries are
getting more complicated, the use of automated control systems
is necessary to optimize their performance. In these systems,
an actuator/sensor fault can bring about irrecoverable damages.
Moreover, the occurrence of disturbances and uncertainties is
inevitable. Therefore, a control system should be designed with
effective robustness against the disturbances and uncertainties as
well as sufficient tolerance against the faults. A control system
maintaining the overall stability along with an acceptable perfor-
mance level in faulty conditions is called a fault tolerant control
(FTC) system.

FTC methods are classified as active (AFTC) or passive (PFTC).
AFTC refers to controllers equipped with fault detection and iso-
lation (FDI) module in order to contract the fault effect intelli-
gently (Blanke, Kinnaert, Lunze, Staroswiecki, & Schröder, 2006).
Whereas, PFTC immunizes the system against presumed faults,
and hence, it is fundamentally based on the robust control theory
(for example, see Benosman & Lum, 2010). Upon occurrence of a
fault in AFTC, the FDI module detects it, the controller reconfigures
correspondingly, and then the control system switches to the new
configuration (for example, see Fawzi, Tabuada, & Diggavi, 2014;
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Teixeira, Shames, Sandberg, & Johansson, 2015). This procedure,
however, results in three challenges: (a) the required time post-
pones the execution of an appropriate action, (b) its performance
highly depends on the FDI accuracy, and (c) switching to a newcon-
figuration can cause unusual transients shocking the system (Jiang
& Yu, 2012). In contrast, PFTC has a fixed simple configurationwith
noneed to FDI. Consequently, it responds as fast as possiblewith no
switching transients (Jiang & Yu, 2012). However, since it makes
the system robust against the worst possible condition, PFTC is
more conservative compared to AFTC.

Different methods have been proposed for FTC, but to the best
of our knowledge, no one has addressed the passive FTC using the
model predictive control (MPC). The MPC is one of the most useful
model based control strategies which can deal with multi-variable
cases with input/state constraints (Camacho & Alba, 2013). This
method employs a model to predict the future process behavior
and calculates an optimal control input sequence at each time step
through the optimization of an objective function. Only the first
input is applied to the process, and the procedure is repeated at the
next sampling instant with the newly updated states. The major
problem of the MPC is heavy online computational requirements
which limits its widespread application. To resolve this issue, the
explicit MPC (eMPC) has been proposed (see Bemporad, Morari,
Dua, & Pistikopoulos, 2002; Borrelli, Bemporad, & Morari, 2017;
TøNdel, Johansen, & Bemporad, 2003), which computes the explicit
state feedback solution of a finite horizon linear quadratic optimal
control problem with input/state constraints. The eMPC utilizes
the multi-parametric programming to calculate the control law
as an explicit piecewise affine function of state and reference
vector (Pistikopoulos, Georgiadis, & Dua, 2007a). In this method,
the closed form of the optimal solution is obtained offline. Hence,
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the online computational effort is considerably reduced and lim-
ited to finding the region of the current states. This advantage,
along with the traditional MPC advantages made eMPC controllers
applicable to fast processes and agile systems to which traditional
MPC controllers were not useful at all. Faísca, Kouramas, Saraiva,
Rustem, and Pistikopoulos (2008) and Kouramas, Faísca, Panos,
and Pistikopoulos (2011) have employed the dynamic program-
ming along with the multi-parametric programming to recast and
solve the original MPC problem as a multi-stage optimization
problem. Solving the reformulated problem instead of the original
one considerably decreases the computational costs, especially for
large scale problems with larger prediction horizons.

Generally, the nominal MPC controllers cannot guarantee
the feasibility, i.e. the constraint satisfaction, when the distur-
bances and model uncertainties affect the system (Pistikopoulos,
2009). Therefore, the robust MPC methods have been developed
(e.g. see Kothare, Balakrishnan, & Morari, 1996; Mayne, Seron,
& Raković, 2005). In contrast to the robust MPC, the current
literature on the robust eMPC is not rich at all (Pistikopou-
los, 2009). Grancharova and Johansen (2003) derived the robust
explicit control law for a linear quadratic MPC problem with
unknown bounded additive disturbances as well as linear inequal-
ity constraints by the rearrangement of the constraints for the
worst admissible situation. Sakizlis, Kakalis, Dua, Perkins, and Pis-
tikopoulos (2004) solved the same problemwith a closed loop for-
mulation to decrease the conservativeness. The sub-optimal robust
explicit control law calculation for a constrained linear systemwith
uncertain model matrices and a quadratic objective function were
also investigated in some other studies (Kouramas, Panos, Faísca,
& Pistikopoulos, 2013; Pistikopoulos, Faísca, Kouramas, & Panos,
2009). In these papers, the same approach as proposed in Faísca
et al. (2008) based on dynamic programming was implemented.
To the best of our knowledge, no paper is available in the eMPC
literature on design of a robust controller against the disturbances
and uncertainties together. Furthermore, the eMPC has not been
utilized in the FTC literature to date.

In this work, the disturbances, model uncertainties, and actua-
tor faults are jointly incorporated in anMPC regulation problem on
a linear system thereby a robust fault tolerant explicit control law
is derived under state/input constraints. The algorithm is proposed
in a novel framework, innovatively employing the presented ideas
in the works of Grancharova and Johansen (2003); Kouramas
et al. (2011, 2013). In this approach, the dynamic programming
along with themulti-parametric programming is utilized based on
work of Kouramas et al. (2011);whereas constraint rearrangement
is inspired by Grancharova and Johansen (2003); Kouramas et
al. (2013). The remainder of this paper is organized as follows.
The MPC problem is introduced in Section 2. The next section
presents how to obtain the robust fault tolerant explicit control
law followed by an illustrative example. A brief discussion on the
concluding remarks is presented in the last section.

2. Problem formulation

Consider the linear discrete-time system

xk+1 = Axk + Buk + Tdk (1)

where xk ∈ Rn, uk ∈ Rm, and dk ∈ Rs are the state, control
input and disturbance vectors, respectively, subject to constraints
xk ∈ X , uk ∈ U , and dk ∈ D. The sets X = {x ∈ Rn

|Mx ≤ µ} and
U = {u ∈ Rm

|Nu ≤ γ } are convex polyhedral with M ∈ RnM×n,
µ ∈ RnM , N ∈ RmN×m, and γ ∈ RmN . Furthermore, the unknown
disturbance dk is limited to dLi ≤ dk,i ≤ dUi (i = 1, . . . , s).
The system matrices A, B are uncertain with unknown bounded

matrices of ∆A, ∆B defined as

A = A0 + ∆A , ∆A ∈ Rn×n , − ϵA|A0| ≤ ∆A ≤ ϵA|A0| (2)

B = B0 + ∆B , ∆B ∈ Rn×m , − ϵB|B0| ≤ ∆B ≤ ϵB|B0| (3)

in which, A0, B0 are the nominal matrices and ϵA, ϵB ∈ [0, 1). The
element-wise absolute value of the nominal matrices denoted by
|X | is also defined as {|xij|} where X = {xij}.

Let uk,i stand for the ith actuator at time instant k and uF
k,i denote

its faulty form modeled as

uF
k,i = (1 − αk,i)uk,i , 0 ≤ αk,i ≤ αU

i ≤ 1 (4)

where αk,i and αU
i indicate the corresponding failure percentage at

time instant k and its upper bound, respectively. Therefore,αk,i = 0
represents the healthy condition, while αk,i = 1 corresponds to
its complete loss. Now, we define Γk ≜ Im − αk where αk ≜
diag{αk,1, . . . , αk,m} and Im is the identity matrix of size m. Hence,
uF
k = Γkuk and the system, under the effect of actuators failure, is

described by

xk+1 = Axk + BΓkuk + Tdk (5)

The constrained MPC problem is defined as

min
Ut

N−1∑
k=0

[x̄Tk|tQ x̄k|t + uT
k|tRuk|t ] + x̄TN|tPx̄N|t (6)

subj. to: x̄k+1|t = A0x̄k|t + B0uk|t , k = 0, . . . ,N − 1 (7)
xk+1|t = Axk|t + BΓkuk|t + Tdk|t , k = 0, . . . ,N − 1 (8)
xk|t ∈ X , k = 0, . . . ,N,

∀ d0|t , . . . , dk−1|t ∈ D,

∀ ∆A0|t , . . . , ∆Ak−1|t which satisfy (2),
∀ ∆B0|t , . . . , ∆Bk−1|t which satisfy (3),
∀ α0|t , . . . , αk−1|t which satisfy (4) (9)

uk|t ∈ U , k = 0, . . . ,N − 1 (10)
xN|t ∈ Xf = {x ∈ Rn

|Mf x ≤ µf },

∀ d0|t , . . . , dN−1|t ∈ D,

∀ ∆A0|t , . . . , ∆AN−1|t which satisfy (2),
∀ ∆B0|t , . . . , ∆BN−1|t which satisfy (3),
∀ α0|t , . . . , αN−1|t which satisfy (4). (11)

where the objective function (6) involves predicted states of the
nominal system, x̄k|t , whose evolution is given in (7). The dy-
namics of the system, which captures the effect of all uncertain
parameters, is given in (8), and in (9)–(11) the constraints for all
realization of the uncertainties are imposed. Furthermore, Ut ≜
{u0|t , . . . , uN−1|t} is the control input sequence, x0|t = xt is the
optimization parameter, Q and P are symmetric positive semi-
definite, R is symmetric positive definite, Xf is the terminal set,
and N is the prediction horizon. At any time instant, the newly
updated optimization parameter, i.e. xt , is used to extract new
control input sequence Ut. For simplicity, in the remainder of the
paper, subscript index k is used instead of subscript index k|t .

At each sampling time, it is desired to obtain the current optimal
control signal u∗

0 as an explicit function of x0, which satisfies the
constraints (9)–(11) for all admissible values of disturbances, uncer-
tainties, and actuators failure. To apply multi-parametric program-
ming, the objective function is assumed to penalize the behavior of
the nominal system (Kouramas et al., 2013). We call the closed-form
solution of this problem as the robust fault tolerant explicit control
law.
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