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a b s t r a c t

Game dynamics have been widely used as learning and computational tool to find evolutionarily stable
strategies. Nevertheless, most of the existing evolutionary game dynamics, i.e., the replicator, Smith,
projection, Brown–Von Neumann–Nash, Logit and best response dynamics have been analyzed only in
the unconstrained case. In this work, we introduce novel evolutionary game dynamics inspired from a
combination of imitationdynamics. The proposed approach is able to satisfy both upper- and lower-bound
constraints.Moreover, dynamics have asymptotic convergence guarantees to a generalized-evolutionarily
stable strategy. We show important features of the proposed game dynamics such as the positive
correlation and invariance of the feasible region. Several illustrative examples handling population state
constraints are provided.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The evolutionary game dynamics have become a powerful tool
in the modeling of strategic interactions (Hofbauer & Sigmund,
1988, 2013; Sandholm, 2010). Recently, this approach has been
implemented in many engineering applications (Quijano et al.,
2017). For instance, this game theoretical approach has been used
in drinking water networks (Barreiro-Gomez, Quijano, & Ocampo-
Martinez, 2016), wireless networks (Lasaulce & Tembine, 2011;
Tembine, Altman, El-Azouzi, & Hayel, 2010), multiple access con-
trol (Zhu, Tembine, & Başar, 2013), congestion games (Poveda,
Brown, Marden, & Teel, 2017; Sandholm, 2010), temperature con-
trol (Obando, Pantoja, & Quijano, 2014), among others. From the
perspective of evolutionary games, constraints and convergence to
a generalized-Nash equilibrium have not been studied so far. Nev-
ertheless, most of the emerging engineering applications involving
resource allocation problems require the consideration of multiple
physical and/or operational constraints. Therefore, there is still
need to study the population-games approach under interaction or
migration restrictions, but also with constraints over the variables,
which is the main issue discussed in this paper.
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The main contribution of this paper consists on novel con-
strained evolutionary game dynamics able to reach a generalized-
Nash equilibrium. To this end, we present the design of both
centralized and distributed evolutionary game dynamics under in-
dividual constraints. The deduction of the aforementioned dynam-
ics is obtained from themean dynamics (Barreiro-Gomez, Obando,
& Quijano, 2017; Sandholm, 2010; Tembine, Altman, ElAzouzi, &
Sandholm, 2008) and by designing appropriately the switching
rates, i.e., by introducing some new modified revision protocols.
Hence, we show that the novel resulting evolutionary population
dynamics are a mixture of imitative classical dynamics. Further-
more, the features of the constrained evolutionary game dynamics
are formally presented, e.g., the positive correlation satisfaction,
the invariance of the simplex set, and the asymptotic stability of
the generalized-Nash equilibrium (generalized evolutionary stable
strategy) under both full-potential games and non-full-potential
games with monotone decreasing fitness functions. In addition, a
way to determine the uniqueness of the equilibrium point under
the proposed dynamics is discussed bymeans of the Kellogg’s fixed
point theorem, different from themonotonicity condition of the fit-
ness functions or by using contractive mapping properties. Finally,
we present some illustrative examples, including an optimization-
based engineering application, allowing to evidence the suitable
performance of the proposed dynamics for some imposed con-
straints.

This paper is organized as follows. Section 2 presents the pre-
liminary concepts of evolutionary games. Section 3 introduces
the proposed novel evolutionary-game dynamics and the for-
mal analysis corresponding to their relevant features. Finally,
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Sections 4 and 5 present some illustrative examples and conclu-
sions, respectively.

Notation. Let R, R>0, R≥0 denote the set of real, positive real,
and non-negative real numbers, respectively. Moreover, 1n (0n)
denotes the vector with n unitary (null) entries, and In denotes the
n × n identity matrix. Boundary of the set ∆ is denoted by ∂∆.
Finally, consider the operator [·]+ = max(0, ·), and the spectrum
of a matrixM ∈ Rn×n denoted by λ(M).

2. Preliminaries

Consider a large population of agents selecting an available
strategy from the set S = {1, . . . , n}, being n ∈ Z>0. The scalar
xi ∈ R≥0 corresponds to the proportion of agents selecting the
strategy i ∈ S. Hence, let x ∈ Rn

≥0 be a population state or strategic
distribution throughout the strategies. The set representing the
possible set of population states such that the population mass
remains constant is given by the simplex set

∆ =

{
x ∈ Rn

≥0 :

∑
i∈S

xi = 1

}
.

Agents make decisions in order to maximize their utilities,
which are determined by a fitness function fi : ∆ → R, i.e., it takes
a population state and return a reward for the proportion of agents
xi selecting the strategy i ∈ S. Similarly, the function f : ∆ → Rn

corresponds to the population fitness function.

Definition 1. A population game is f : ∆ → Rn. ■

In a population game denoted by f , given that x ∈ ∆, we
equivalently interpret x(t) as a mixed strategy used by the players
at time t , i.e., players select the action i ∈ S with probability
xi(t) (Lasaulce & Tembine, 2011). The objective in the population
is to reach a Nash equilibrium.

Definition 2 (Nash equilibria). The set of Nash equilibria of the
population game f is given by

NE(f ) =

{
x ∈ ∆ : x ∈ argmax

y∈∆
y⊤f (x)

}
. ■

If the population game f : ∆ → Rn is continuous, then there is
at least a Nash equilibrium.

Definition 3 (Games with Monotone Fitness). The population game
f : ∆ → Rn is monotone decreasing if

(x − y)⊤ (f (x) − f (y)) ≤ 0, ∀ x, y ∈ ∆.

Alternatively, if f is continuously differentiable and monotone
decreasing, then a sufficient condition is Df (x) ⪯ 0. ■

Definition4 (Full-Potential Game). f is a full-potential game if there
exists a continuously differentiable potential function g : Rn

→ R,
such that f (x) = ∇g(x), ∀x ∈ Rn. ■

Different from the classic population games (Sandholm, 2010),
now we consider that each strategy has an associated carrying ca-
pacity, i.e., the constant parameter x̄i denotes the carrying capacity
associated to the strategy i ∈ S . Hence, let xi denote the minimum
limit for the proportion of agents selecting i ∈ S. Consequently,
each proportion of agents is constrained to an interval xi ∈ Xi =

[xi, x̄i], where xi, x̄i ∈ R≥0, for all i ∈ S. It follows thatX =
∏

i∈SXi,
and the feasible set of population states is given by∆∩X . In order
to simplify the notation, let us consider the vectors x̂ = x̄ − x and
x̌ = x − x representing a tolerance from the actual population
state x and the borders x̄ and x. Under this novel perspective, the

proportion of agents xi makes decisions in order to maximize their
benefits determined by a fitness function fi : ∆ ∩ X → R, being
f : ∆ ∩ X → Rn the population fitness function. Therefore,
the population objective becomes to reach a generalized-Nash
equilibrium as defined next.

Definition 5 (Generalized-Nash equilibria). Consider each propor-
tion of agents constrained in xi ∈ Xi = [xi, x̄i], i.e., x ∈ X =

∏n
i=1Xi.

The set of generalized-Nash equilibria of the population game f is
given by

GNE(f ,X ) =

{
x ∈ ∆ ∩ X : x ∈ arg max

y∈∆∩X
y⊤f (x)

}
. ■

Notice that, if xi < x̄i ≤ 1, and x⊤1n < 1 < x̄⊤1n, then the
set ∆ ∩ X is non-empty, convex and compact. If in addition f :

∆ → Rn is continuous, then there exists at least one Generalized-
Nash equilibrium. Together with the individual constraints given
by the setsXi, for all i ∈ S , there are further constrained associated
to possible interaction within the population. Let us suppose that
the interactions are represented by an undirected and connected
graph G = (S, E, A), where E ⊆ {(i, j) : i, j ∈ S} is the set of
links representing the possible interaction among the proportion
of agents, i.e., if (i, j) ∈ E , then the proportion of agents xi and xj
can interact to each other. In other words, (i, j) ∈ E means that
agents selecting the strategy i ∈ S could migrate to strategy j ∈ S
and vice versa. Moreover, A ∈ {0, 1}n×n is the adjacency matrix
of the graph G, and whose entries are aij = 1, if (i, j) ∈ E; and
aij = 0, otherwise. The function ϱ : ∆×Rn

→ Rn×n
≥0 is the revision

protocol, which describes how agents are making decisions. The
revision protocol takes a population state and the corresponding
fitness, and returns a non-negative matrix. Therefore, let ϱij(x, f )
be the switching rate from the ith to jth strategy. Then, the agents
selecting the strategy i ∈ S have incentives to migrate to the
strategy j ∈ S only if ϱij(x, f ) > 0, and it is also possible to design
switch rates depending on the topology describing the migration
constraints, i.e., ϱij(x, f , A), where A is the adjacency matrix of G.
The evolutionary game dynamics emerge from the combination of
the switching rates imposed by revision protocols and the mean
dynamics (Barreiro-Gomez et al., 2017; Sandholm, 2010; Tembine
et al., 2008) i.e.,

ẋi =

∑
j∈S

xjϱji(x, f ) − xi
∑
j∈S

ϱij(x, f ), ∀i ∈ S. (1)

There is a class of dynamics, known as imitation dynamics, which
has been recently studied, e.g., (Govaert, Ramazi, & Cao, 2017;
Zino, Como, & Fagnani, 2017) . Within this class, we present four
different Pairwise Proportional Imitation revision protocols that
allow to consider individual constraints in the evolutionary game
dynamics, i.e,

• Smith-replicator-based Pairwise Proportional Imitation: Agents
imitate the opponent only if its payoff is greater than his own, and
if there are options to imitate according to the individual carrying
capacity corresponding to the opponent’s strategy, i.e.,

ϱsr
ij (x, f ) =

1
xi

[x̂j]+ · [x̌i]+ · [fj − fi]+.

Recall that x̂ = x̄ − x and x̌ = x − x, and notice that, when xi = 0,
then the revision protocol becomes ϱsr

ij (x, f ) = [x̂j]+ · [fj − fi]+.
• Projection-mixture-based Pairwise Proportional Imitation:

Agents imitate the opponent if it is obtaining a higher payoff. Also,
this protocol verifies the individual carrying capacity correspond-
ing to the opponent’s strategy, i.e.,

ϱ
pm
ij (x, f ) =

1
nxi

[x̂j]+ · [fj − fi]+.
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