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a b s t r a c t

In this paper, we study the problem of asymptotic stability of continuous-time positive switched linear
systems under both arbitrary and restricted switchings. It is well-known that asymptotic stability under
arbitrary switching can be implied by several classes of strong common copositive Lyapunov functions
(CLFs), i.e., functions whose derivative along the nontrivial system trajectories is negative. However,
asymptotically stable positive switched systemsmay not admit strong common CLFs. The main contribu-
tion of this paper is to study the stability problem by requiring only weak common CLFs. Firstly, necessary
and sufficient conditions are established for asymptotic stability under arbitrary switching. Among them,
an easily verifiable graphical stability criterion, based on the connectivity of the digraphs associated with
the subsystemmatrices, is proposed. Secondly, we further relax the obtained graphical condition to derive
a relaxed weak excitation condition for asymptotic stability under dwell-time switching. Finally, two
examples are provided to illustrate the effectiveness of our theoretical results.

© 2018 Published by Elsevier Ltd.

1. Introduction

A switched system consists of two parts—a finite family of sys-
tems and a switching signal that selects an active subsystem from
the family at every instant of time. Due to their broad applications
in engineering, switched systems have attracted a growing interest
over the past few decades (Lin & Antsaklis, 2009; Shorten, Wirth,
Mason, Wulff, & King, 2007; Sun & Ge, 2011).

Positive switched linear systems (PSLSs), as a special type of
switched systems, have great significance from both practical and
theoretical points of view. Indeed, positive systems arise in the
modeling of practical problems from diverse areas, e.g., biology,
economics, communication and engineering control (Hernandez-
Vargas, Colaneri, &Middleton, 2013; Shorten,Wirth, & Leith, 2006;
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Zappavigna, Charalambous, & Knorn, 2012). Meanwhile, the posi-
tivity constraint, on the one hand, requires resorting to less settled
approaches based on cones and polytopes, and on the other hand,
brings about very fruitful but elegant theory (Blanchini, Colaneri,
& Valcher, 2015; Li, Lam, Wang, & Date, 2011; Shen & Lam, 2016).
Stability property of PSLSs has been amain issue attracting consid-
erable attention of researchers (Fainshil, Margaliot, & Chigansky,
2009; Gurvits, Shorten, & Mason, 2007; Liu & Dang, 2011; Zhao,
Zhang, Shi, & Liu, 2012). So far, two stability issues are addressed in
the literature, i.e., stability under arbitrary switching and stability
under restricted switching. For the stability analysis problem, the
first question is whether PSLSs are asymptotically stable when
there is no restriction on the switching signals. This problem is
usually called stability analysis under arbitrary switching. On the
other hand, we know that stability under arbitrary switching is
a very strong property. PSLSs may fail to preserve stability under
arbitrary switching, but may be asymptotically stable under some
restricted switching signals. In this case, most attention has been
drawn to identifying classes of stabilizing switching signals, which
is often called stability analysis under restricted switching.

Lyapunov functions are central tools in the study of the stability
analysis problem. Generally, Lyapunov functions can be classified
into strong and weak types, depending on whether their existence
is enough to ensure asymptotic stability (strong) or just stability
(weak). In particular, when dealing with positive systems, we only
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need Lyapunov functions to be copositive, i.e., taking positive val-
ues only in the positive orthant. As a consequence, strong common
copositive Lyapunov functions (CLFs) are widely used to deal with
the asymptotic stability of PSLSs under arbitrary switching. Three
classes of strong common CLFs are reported in the literature. To
be specific, necessary and sufficient conditions for the existence
of common linear CLFs have been obtained, see, e.g., Ding, Shu,
and Liu (2011), Fornasini and Valcher (2010, 2012), Knorn, Mason,
and Shorten (2009), Mason and Shorten (2007) and Wu and Sun
(2013). It is shown that the existence of a common linear CLF
implies that of a common quadratic CLF (Blanchini et al., 2015).
Pastravanu and Matcovschi (2014) further explored the existence
of common max-type CLFs, which is proved to be independent of
the existence of common linear CLFs. However, as we all know, the
existence of such strong commonCLFs is only a sufficient condition
for the asymptotic stability of PSLSs under arbitrary switching.
Therefore, studying the stability via such strong common CLFsmay
sometimes lead to conservatism. In addition, in certain case, the
constituent systems of a PSLS cannot share a strong common CLF
but a weak one, such as linear compartmental switched systems
(Valcher & Zorzan, 2016) and formation control systems (Rantzer,
2012). It is clear that the existence of weak common CLFs is not
sufficient for the asymptotic stability. A key question arising here
is that, under the existence of weak common CLFs, what additional
conditions are needed to ensure the asymptotic stability of PSLSs
under arbitrary switching. This issue is our primary goal.

Motivated by the discussions above, in this paperwe investigate
the stability problem of continuous-time PSLSs in the framework
of weak common linear (resp. max-type) CLFs. More precisely,
first of all, attention is focused on the asymptotic stability of the
considered systems under arbitrary switching, and necessary and
sufficient stability criteria are derived. Among them, a novel graph-
ical condition is given in terms of the connectivity of the digraphs
associated with the subsystem matrices, which is very easy to
check. Then, we loosen the obtained graphical stability condition
to ensure the asymptotic stability of the considered systems under
dwell-time switching signals. Such stabilizing condition is referred
to as the relaxed weak excitation due to the fact that it relaxes the
weak excitation introduced in Meng, Xia, Johansson, and Hirche
(2017). Finally, two examples are provided to illustrate our results
established in this paper.

The rest of this paper is organized as follows. The problemunder
consideration is formulated in Section 2. The stability analysis
under arbitrary switching is provided in Section 3. Based on the
graphical stability criterion obtained in Section 3, the relaxedweak
excitation is derived in Section 4. Two examples are provided in
Section 5 to illustrate the effectiveness of the obtained results.
Finally, we conclude this paper in Section 6 and the Appendix
contains a technical lemma needed in Section 4.

We close this section with some notation used in this paper.
Denote byRn andRn×n the n-dimensional real space and the space
of n × n real matrices, respectively. Let N be the set of natural
numbers including zero. The ith component of a vector v is denoted
by vi. For two vectors v, w ∈ Rn, we write v ⪰ w if vi ≥ wi for all
i ≤ n and v ≻ w if vi > wi for all i ≤ n. The notation A⊤ (v⊤) stands
for the transpose of a matrix A (a vector v). A Metzler matrix is a
real square matrix, whose off-diagonal entries are all nonnegative.
We say that a matrix A ∈ Rn×n is nonnegative if all of its entries
are nonnegative. Denote by ei the ith canonical basis vector in Rn,
i.e., the vector with all entries equal to zero but the ith one equal
to 1.

For a matrix A = [aij]n×n, its induced digraph is defined
by G(A) = (V, E), where V = {1, . . . , n} is the set of vertices and
E ⊂ V × V is the set of arcs so that (j, i) ∈ E if and only if aij ̸= 0. A
path in G(A) from i0 to ik is a sequence of distinct vertices i0, i1 . . . ik
such that each successive pair of vertices is an arc of the digraph.

The integer k (i.e., the number of its arcs) is the length of the path. If
there is a path from i to j, we say that i can reach j, denoted by i ⇝ j.
We say that G(A) is strongly connected if each vertex is reachable
from the other for any two distinct vertices. In this case, thematrix
A is said to be irreducible.

2. Problem formation

Consider the continuous-time positive switched linear system:

ẋ(t) = Aσ (t)x(t), t ≥ 0 (1)

where x(t) ∈ Rn
+

is the system state and σ (t) : [0, ∞) → P =

{1, . . . ,m} is a piecewise constant switching signal, continuous
from the right, specifying which subsystem is activated at each
time t . The switching instants form a strictly increasing sequence
{tk}∞k=0 with limt→∞tk = ∞. The matrices A1, . . . , Am are assumed
to beMetzler, which amounts to saying that system (1) is a positive
switched linear system, meaning that its solution x(t) ⪰ 0 for all
t ∈ [0, ∞) if the initial condition x(0) ⪰ 0.

Our standing assumption is the following.

Assumption 1. There exists a vector v ≻ 0 such that v⊤Ap ⪯ 0⊤

for all p ∈ P .

A particularly important class of systems, which satisfies As-
sumption 1, is called compartmental systems in the literature, see.
e.g., Valcher and Zorzan (2016).

Letting V (x) = v⊤x, we see that for any solution x(t) ⪰ 0 of
system (1), V̇ (x(t)) = v⊤Aσ (t)x(t) ≤ 0 for all t ≥ 0, namely V (x)
is a weak common linear copositive Lyapunov function (WCLCLF)
for system (1) if and only if Assumption 1 holds. Similarly, if A⊤

p
satisfies Assumption 1 for all p ∈ P , define V (x) = maxi≤n

xi
vi
. By

letting M(t) = {i : xi(t)/vi = V (x(t))}, we have

D+V (x(t)) = max
i∈M(t)

ẋi(t)
vi

= max
i∈M(t)

∑n
j=1 a

ij
σ (t)xj(t)

vi

≤ max
i∈M(t)

∑n
j=1 a

ij
σ (t)vj(t)V (x(t))

vi

= max
i∈M(t)

(Aσ (t)v)iV (x(t))
vi

≤ 0,

where the first inequality is due to the fact that aijσ (t)xj(t) ≤

aijσ (t)vjV (x(t)) for all j ̸= i ∈ M(t) and aiiσ (t)xi(t) = aiiσ (t)viV (x(t))
for i ∈ M(t). That is, V (x) is a weak common max-type copositive
Lyapunov function (WCMCLF) for system (1) if and only if Assump-
tion 1 is satisfied with A⊤

p for all p ∈ P .
We introduce the notion of asymptotic stability for system (1)

under arbitrary switching. It is well-known that, for switched
linear systems, asymptotic stability is equivalent to exponential
stability (Sun & Ge, 2011, Proposition 2.13).

Definition 1. Wesay that system (1) is asymptotically stable under
arbitrary switching if, for every switching signal σ (·) and every
nonnegative initial condition x(0), the trajectory x(t) converges to
zero as t → ∞.

Likewise, the asymptotic stability under restricted switching
can be defined by restricting the switching signals to some admis-
sible sets.

We see that the previous two classes of weak Lyapunov func-
tions only guarantee that system (1) is stable, but not asymp-
totically stable. This paper is devoted to the problem of finding
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