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a b s t r a c t

This paper presents a fully automated procedure for controller synthesis for multi-agent systems under
coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models
the coupling constraints and the other one is an additional bounded control input.We aim to design these
inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal
Logic (MITL). First, a decentralized abstraction that provides a space and time discretization of the multi-
agent system is designed. Second, by utilizing this abstraction and techniques from formal verification,
we propose an algorithm that computes the individual runs which provably satisfy the high-level tasks.
The overall approach is demonstrated in a simulation example conducted in MATLAB environment.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few years, the field of control of multi-agent
systemsunder high-level specifications has been gaining attention.
In this work, we aim to additionally introduce specific time bounds
into these tasks, in order to include specifications such as ‘‘Robot
1 and robot 2 should visit region A and B within 4 time units,
respectively’’, or ‘‘Both robots 1 and 2 should periodically survey
regions A1, A2, A3, avoid region X and always keep the longest time
between two consecutive visits to A1 below 8 time units’’.

The qualitative specification language that has primarily been
used to express the high-level tasks is Linear Temporal Logic (LTL)
(see, e.g., Wongpiromsarn, Topcu, & Murray, 2010). There is a
rich body of literature containing algorithms for verification and
synthesis of multi-agent systems under high level specifications
(Guo & Dimarogonas, 2015; Kantaros & Zavlanos, 2016; Saha, Ra-
maithitima, Kumar, Pappas, & Seshia, 2016). Controller synthesis
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under timed specifications has been considered in Fu and Topcu
(2015), Liu and Prabhakar (2014), Raman, Donzé, Sadigh, Murray,
and Seshia (2015) and Zhou, Maity, and Baras (2016). In Liu and
Prabhakar (2014), the authors addressed the problem of design-
ing high-level planners to achieve tasks for switching dynamical
systems under Metric Temporal Logic (MTL) specifications and in
Raman et al. (2015), the authors utilized a counterexample-guided
synthesis for cyber–physical systems subject to Signal Temporal
Logic (STL) specifications. In Fu and Topcu (2015), an optimal
control problem for continuous-time stochastic systems subject
to objectives specified in MITL was studied. In Zhou et al. (2016),
the authors focused onmotion planning based on the construction
of an efficient timed automaton from a given MITL specification.
However, all these works are restricted to single agent planning
and are not extendable tomulti-agent systems in a straightforward
way. High-level coordination of multiple vehicles under timed
specifications has been considered in Karaman and Frazzoli (2008),
by solving an optimization problem over the tasks’ execution time
instances.

An automata-based solution for multi-agent systems was pro-
posed in our previous work (Nikou, Tumova, & Dimarogonas,
2016), whereMetric Interval Temporal Logic (MITL) formulaswere
introduced in order to synthesize controllers such that every agent
fulfills an individual specification and the team of agents fulfills
a global task. Specifically, the abstraction of each agent’s dynam-
ics was considered to be given and an upper bound of the time
that each agent needs to perform a transition from one region to
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another was assumed. Furthermore, potential coupled constraints
between the agents were not taken into consideration. Motivated
by this, in this work, we aim to address the aforementioned is-
sues. We assume that the dynamics of each agent consists of two
parts: the first part is a consensus type term representing the
coupling between the agent and its neighbors, and the second one
is an additional control input which will be exploited for high-
level planning. Hereafter, we call it a free input. A decentralized
abstraction procedure is provided, which leads to an individual
Transition System (TS) for each agent and provides a basis for
high-level planning. Additionally, this abstraction is associated to a
time quantizationwhich allows us to assign precise time durations
to the transitions of each agent. Abstractions for both single and
multi-agent systems can be found in Alur, Henzinger, Lafferriere,
and Pappas (2000), Boskos and Dimarogonas (2015), Hussein,
Ames, and Tabuada (2017), Meyer, Girard, and Witrant (2017),
Zamani, Mazo, and Abate (2014) and Zamani, Pola, Mazo, and
Tabuada (2012). Compositional frameworks are provided inMeyer
et al. (2017) for safety specifications of discrete time systems, and
Hussein et al. (2017), which is focused on feedback linearizable
systemswith a cascade interconnection. In addition, local invariant
sets for discrete time coupled linear systems are considered in
Nilsson and Ozay (2016) and are leveraged for control synthesis.
The above results are therefore not applicable to the decentralized
abstraction of the multi-agent control systems we consider, which
evolve in continuous time and do not require a specific network
interconnection.

Motivated by our previouswork (Boskos &Dimarogonas, 2015),
we start from the consensus dynamics of each agent and we con-
struct a Weighted Transition System (WTS) for each agent in a de-
centralizedmanner. Each agent is assigned an individual task given
in MITL formulas. We aim to design the free inputs so that each
agent performs the desired individual task within specific time
bounds. In particular, we provide an automatic controller synthesis
method for coupled multi-agent systems under high-level tasks
with timed constraints. A motivation for this framework comes
from applications such as the deployment of aerial robotic teams.
In particular, the consensus coupling allows the robots to stay
sufficiently close to each other and maintain a connected network
during the evolution of the system. Additionally, individual MITL
formulas are leveraged to assign area monitoring tasks to each
robot individually. The MITL formalism enables us to impose time
constraints on the monitoring process. The interested reader is
referred to Nikou, Boskos, Tumova, and Dimarogonas (2017) for an
extended version of this paper that includes additional examples,
detailed derivations and proofs.

2. Notation and preliminaries

Denote by R,Q+,N the set of real, nonnegative rational and
natural numbers including 0, respectively. Given a set S, we denote
by |S| its cardinality, by SN = S × · · · × S, its N-fold Cartesian
product and by 2S the set of all its subsets. For a subset S of
Rn, denote by cl(S), int(S) and ∂S = cl(S) \ int(S) its closure,
interior and boundary, respectively. The notation ∥x∥ is used for
the Euclidean norm of a vector x ∈ Rn and ∥A∥ = max{∥Ax∥ :

∥x∥ = 1} for the induced norm of amatrix A ∈ Rm×n; an undirected
graph G is a pair (I, E), where I = {1, . . . ,N} is a finite set of nodes,
representing a team of agents, and E ⊆ {{i, j} : i, j ∈ I, i ̸= j}, is
the set of edges that model the communication capability between
the neighboring agents. For each agent, its neighbors’ set N (i) is
defined as N (i) = {j1, . . . , jNi} = {j ∈ I : {i, j} ∈ E} where
Ni = |N (i)|. The Laplacian matrix L(G) ∈ RN×N of the graph G is
defined as L(G) = D(G)D(G)⊤ where D(G) is the N × |E| incidence
matrix, as it is defined in Mesbahi and Egerstedt (2010, Chapter 2).
If we consider an ordering 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λN (G) =

λmax(G) of the eigenvalues of L(G) then we have that λ2(G) > 0 iff
G is connected (Mesbahi & Egerstedt, 2010, Chapter 2). Denote by
x̃ ∈ R|E|n the stack column vector of the vectors xi − xj, {i, j} ∈ E
with the edges ordered as in the case of the incidence matrix D(G).

Definition 1. A cell decomposition S = {Sℓ}ℓ∈I of a set D ⊆

Rn, where I ⊆ N is a finite or countable index set, is a family
of uniformly bounded convex sets Sℓ, ℓ ∈ I such that int(Sℓ) ∩

int(Sℓ̂) = ∅ for all ℓ, ℓ̂ ∈ Iwith ℓ ̸= ℓ̂ and∪ℓ∈ISℓ = D. The interiors
of the cells are non-empty.

Definition 2 (Alur & Dill, 1994). A time sequence τ = τ (0)τ (1) . . .
is an infinite sequence of time values τ (j) ∈ T, with T = Q+,
satisfying the following properties: Monotonicity: τ (j) < τ (j + 1)
for all j ≥ 0; Progress: For every t ∈ T, there exists j ≥ 1, such
that τ (j) > t .

Definition 3 (Alur & Dill, 1994). An atomic proposition p is a
statement that is either True (⊤) or False (⊥). Let AP be a finite set
of atomic propositions. A timedwordw over the setAP is an infinite
sequence wt

= (w(0), τ (0))(w(1), τ (1)) . . . where w(0)w(1) . . . is
an infiniteword over the set 2AP and τ (0)τ (1) . . . is a time sequence
with τ (j) ∈ T, j ≥ 0.

Definition 4. A Weighted Transition System (WTS) is a tuple
(S, S0, Act,−→, d, AP, L) where S is a finite set of states; S0 ⊆ S
is a set of initial states; Act is a set of actions; −→⊆ S × Act × S
is a transition relation; d :−→→ T is a map that assigns a positive
weight to each transition; AP is a finite set of atomic propositions;
and L : S → 2AP is a labeling function. For every s ∈ S and α ∈ Act
define Post(s, α) = {s′ ∈ S : (s, α, s′) ∈−→}.

Definition 5. A timed run of a WTS is an infinite sequence r t =

(r(0), τ (0))(r(1), τ (1)) . . . , such that r(0) ∈ S0, and for all j ≥ 1,
it holds that r(j) ∈ S and (r(j), α(j), r(j + 1)) ∈−→ for a sequence
of actions α(1)α(2) . . . with α(j) ∈ Act,∀ j ≥ 1. The time stamps
τ (j), j ≥ 0 are inductively defined as follows: (1) τ (0) = 0; (2)
τ (j + 1) = τ (j) + d(r(j), α(j), r(j + 1)), ∀ j ≥ 1. Every timed run r t
generates a timed word w(r t ) = (w(0), τ (0)) (w(1), τ (1)) . . . over
the set 2AP

×Twherew(j) = L(r(j)), ∀ j ≥ 0 is the subset of atomic
propositions that are true at state r(j).

The syntax of Metric Interval Temporal Logic (MITL) over a set
of atomic propositions AP is defined by the grammar: ϕ :=

p | ¬ϕ | ϕ1 ∧ ϕ2 | ⃝Iϕ | ⋄Iϕ | □Iϕ | ϕ1 UI ϕ2, where p ∈ AP , and ⃝,
⋄, □, and U , are the next, eventually, always, and until, temporal
operator, respectively; I = [a, b] ⊆ T where a, b ∈ [0,∞]

with a < b is a non-empty timed interval. The MITL formulas are
interpreted over timed words like the ones produced by a WTS
which is given in Definition 5. The semantics of MITL can be found
in Nikou et al. (2017, Section 2). It has been proved that MITL
is decidable in infinite words and point-wise semantics, which is
the case considered here (see Alur, Feder, & Henzinger, 1996 for
details).

Let C = {c1, . . . , c|C |} be a finite set of clocks. The set of clock
constraints Φ(C) is defined by the grammar: φ := ⊤ | ¬φ | φ1 ∧

φ2 | c ▷◁ ψ , where c ∈ C is a clock, ψ ∈ T is a clock constant and
▷◁ ∈ {<,>,≥,≤,=}. A clock valuation is a function ν : C → T
that assigns a value to each clock.

Definition 6 (Alur & Dill, 1994; Bouyer, 2009; Tripakis, 2009). A
Timed Büchi Automaton is a tupleA = (Q ,Q init, C, Inv, E, F , AP,L)
where Q is a finite set of locations; Q init

⊆ Q is the set of initial
locations; C is a finite set of clocks; Inv : Q → Φ(C) is the
invariant; E ⊆ Q × Φ(C) × 2C

× Q gives the set of edges of the
form e = (q, γ , R, q′), where q, q′ are the source and target states,
γ is the guard of edge e and R is a set of clocks to be reset upon
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