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a b s t r a c t

This paper presents a sliding mode control (SMC) method for a class of nonlinear Markovian jump
singularly perturbed systems (MJSPSs). The system is subject to parameter uncertainties and partly un-
known transition probabilities. To fully employ themodel characteristics of such a hybrid system, a novel
integral-type switching function is firstly designed. By adopting the ε-dependent stochastic Lyapunov
function method, sufficient conditions are presented to ensure the mean-square asymptotic stability of
the slidingmode dynamics. Amode-dependent fuzzy SMC law is then synthesized to induce andmaintain
the sliding motion despite partly unknown transition probabilities and parameter uncertainties. Finally,
the developed method is applied to stabilize a modified series DC motor system.

© 2018 Published by Elsevier Ltd.

1. Introduction

It is well known that many processes inherently have a two-
scale dynamic, which can be exactly modeled by singularly per-
turbed systems (SPSs) (Shi & Dragan, 1999). The key feature of
an SPS lies in that there is a small parasitic parameter multiplying
the time derivatives of a part of the states in the model, which
makes the system stiff and unwieldy. Take the power system as an
example, the small parasitic parametermay represent themachine
reactance or transient in the voltage regulator. Some results on
analysis and synthesis for SPSs (Chen, Wang, Wei, & Lu, 2014;
Fridman, 2002; Karimi, Yazdanpanah, & Khorasani, 2006; Vecchio
& Slotine, 2013; Xu& Feng, 2009; Yang, Sun, &Ma, 2013) have been
reported in the recent years. It is worth mentioning that the afore-
mentioned results aremainly confined to linear SPSs. For nonlinear
SPSs, especially for highly complex nonlinear SPSs, it is difficult to
decompose them into slow and fast subsystems, and the analysis is
more complicated than the linear case. Recently, T–S fuzzy model
approach has been proposed to deal with the complex nonlinear
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systems. In view of its great success, considerable attention has
been devoted to controller design for fuzzy SPSs (Yang & Dong,
2008; Yang & Zhang, 2009). With T–S fuzzy models, the nonlinear
SPS can be approximated by the weighted sum of a series of linear
subsystem. Thus, the relatively mature linear SPS theory can be
utilized (Liu, Wu, Zhou, & Lam, 2015).

In practice, the SPSs may experience abrupt changes in their
structures and parameters. The abrupt changesmay come from the
parameters shifting or component failures,whichmay severely de-
grade the systemperformance and even lead to instability (Karimi,
2011; Li, Gao, Shi, & Zhao, 2014). The hybrid systems, which in-
volve both time-evolving and event-driven mechanisms, may be a
natural representation of above problem. A special type of hybrid
systems isMarkovian jump singularly perturbed systems (MJSPSs).
The control of linear or fuzzy MJSPSs has been an important re-
search topic and a number of approaches have been available in
the literature for controlling linear or fuzzy MJSPSs (Liu, Sun, &
Sun, 2004; Wang, Huang, Zhang, & Yang, 2014). It is worth men-
tioning that the existing results on linear or fuzzyMJSPSs are based
on a common assumption that the transition probabilities of the
underlying Markov chain are completely known. Although norm
bounded uncertainties in transition probabilities are considered
in Wang et al. (2014), the ‘‘nominal ’’ terms of transition probabili-
ties still need to be known in advance. As is illustrated in Zhang and
Boukas (2009) and Zhang and Lam (2010), however, incomplete
transition probabilities often exist in practical applications since it
is time-consuming or too costly to obtain the enough samples of
the transitions.
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On the other hand, as a fruitful research frontier of the control
community, the slidingmode control (SMC) has a number of attrac-
tive advantages, such as fast response and complete compensation
of matched uncertainties and disturbances when the system is in
the sliding phase. The SMC problems have been well addressed
for a variety of complex systems, such as, stochastic systems,
time-delay systems, Markovian jump systems, and descriptor sys-
tems (Basin, Ferreira, & Fridman, 2006; Basin, Panathula, Shtessel,
& Ramirez, 2016; Basin & Ramirez, 2012; Chen, Niu, & Zou, 2013a,
b; Kao, Xie, Wang, & Karimi, 2015; Li, Shi, Yao, & Wu, 2016; Niu,
Daniel, & Lam, 2005; Shi, Xia, Liu, & Rees, 2006; Song, Niu, & Zou,
2015; Wang, Shen, Karimi, & Duan, 2017; Wu, Shi, & Gao, 2010;
Wu, Su, & Shi, 2012). Meanwhile, several SMCmethodologies have
been extended to accommodate SPSs (Gao, Sun, & Lu, 2011; Lin,
2014; Nagarale & Patre, 2014). However, it should be pointed out
that only the linear MJSPSs with complete knowledge of transition
rate were considered in the literature. Although it is of more prac-
tical importance, the corresponding SMC problem for T–S fuzzy-
model-based nonlinear MJSPSs with partly unknown transition
probabilities has not yet been adequately investigated probably
due to the difficulties in accommodating the model characteristics
of such hybrid systems. The nonlinear characteristics of T–S fuzzy
models and the singular perturbation structure of SPSs increase
substantial challenges to the SMC design, not to mention the diffi-
culties brought from the stochastic transition of systemparameters
and partly unknown transition probabilities. Correspondingly, the
following three key questions need to be addressed during the SMC
design:

Q1. The switching function proposed in existing SMC results
is not workable for fuzzy MJSPSs due to the model complexity.
In this case, how to design a suitable switching function to fully
accommodate the model characteristics of such systems?

Q2. The existing methods are only applicable for linear or fuzzy
MJSPSs with completely known transition probabilities. When
sliding modes take place, how to obtain stochastic stabilization
conditions for fuzzy MJSPSs in the presence of partly unknown
transition probabilities?

Q3. How to analyze an SMC to induce and keep a slidingmotion
despite parameter uncertainties, stochastic switching of systems
modes and partly unknown transition probabilities?

Summarizing the above discussions, in this paper, we aim to
address the SMC problem for a class of fuzzy MJSPSs subject to pa-
rameter uncertainties and partly unknown transition probabilities.
Firstly, a novel integral-type switching function is designed to fully
capture the model characteristics. Secondly, sufficient conditions
are presented to ensure the mean-square asymptotic stability of
the sliding mode dynamics despite parameter uncertainties and
partly unknown transition probabilities. Then, a fuzzy SMC law is
synthesized to guarantee the reaching condition despite parameter
uncertainties and partly unknown transition probabilities. Finally,
a practical example on modified series DC motor is employed to
illustrate the applicability of developed approach.

Notations: The matrix transposition is represented by super-
script T . Throughout this paper, Rn and Rm×n represent, respec-
tively, the n-dimensional Euclidean space and the set of all m ×

n real matrices. M⊥(x) ∈ Rn×(n−m) represents the matrix with
independent columns that span the null space of M(x) ∈ Rn×m.
span{Mi} denotes the set of all linear combinations composed
of vectors Mi. Ellipsis ‘‘· · · ’’ represents the omitted matrices and
number. Notation ‘‘*’’ denotes the term induced by symmetry. The
superscript ‘‘+’’ indicates the left inverse of a matrix. diag{· · · }

denotes the block diagonal matrix, and I represents the identity
matrix. (Ω , F , P) denotes a probability space, where Ω , F and P
represent, respectively, the sample space, the σ -algebra of subsets
of the sample space, and the probability measure.

2. System description and preliminaries

Let {rt , t ≥ 0} be a continuous-time Markov process with a
right continuous trajectory which takes values in a finite set S =

{1, 2, . . . , s} with transition rate matrix Π =
(
πpq

)
s×s given by

P {rt+∆ = q|rt = p} =

{
πpq∆ + o(∆) if q ̸= p
1 + πpq∆ + o(∆) if q = p

(1)

where ∆ > 0 and lim∆→0o(∆)/∆ = 0; πpq > 0, q ̸= p and
πpq = −

∑
q̸=pπpq for each p ∈ S. It is assumed that the transi-

tion rates or probabilities of the jumping process are only partly
accessed, which means some elements in matrix Π are unknown.
For instance, for a system with 4 operation modes, the transition
rate matrix Π may be depicted as

Π =

⎡⎢⎣π11 π12 ? π14
? π12 ? π24

π31 ? ? π34
? π42 π43 ?

⎤⎥⎦
with ‘‘?’’ denoting the inaccessible elements. For notational
clarity, ∀p ∈ S , we denote S = Sp

k
⋃

Sp
uk

⋃
Sp
k,p

⋃
Sp
uk,p with

Sp
k ≜

{
q :πpq is known, q ̸= p

}
, Sp

k,p ≜
{
p : πpp is known

}
, Sp

uk ≜{
q :πpq is unknown, q ̸= p

}
, Sp

uk,p≜
{
p :πpp is unknown

}
.

Moreover, if Sp
k ̸= Ø, it is further represented as Sp

k ={
Kp

1,K
p
2, . . . ,K

p
mp

}
, ∀1 ≤ mp ≤ s where Kp

mp ∈ N+ represents
the mpth known element with the index Kp

mp in the pth row of the
transition rate matrix Π . Also, we denote π̂

p
k = 1 +

∑
q∈Sp

k
πpq.

Fix a probability space (Ω , F , P), and consider the following
uncertain fuzzy MJSPS, which can be exactly described by the
following fuzzy rules:

Model Rule i: IF z1(x(t)) is ηi1, z2(x(t)) is ηi2, · · · , zl(x(t)) is ηil,
THEN

ẋ1(t) =
(
A11i(rt ) + ∆A11i(rt , t)

)
x1(t) +

(
A12i(rt )

+ ∆A12i(rt , t)
)
x2(t) + B1i(rt )

(
u(t) + f

(
x(t), rt

))
εẋ2(t) =

(
A21i(rt ) + ∆A21i(rt , t)

)
x1(t) +

(
A22i(rt )

+ ∆A22i(rt , t)
)
x2(t) + B2i(rt )

(
u(t) + f

(
x(t), rt

))
i = 1, 2, . . . , r (2)

where ηi1, ηi2, . . . , ηil are the fuzzy sets, r is the number of fuzzy
rules, z1(x(t)), z2(x(t)), . . . , zl(x(t)) are the premise variables, and
ε > 0 is the singular perturbation parameter. x1(t) ∈ Rn1 and
x2(t) ∈ Rn2 are the state vectors, u(t) ∈ Rm is the control
input. A11i(rt ) ∈ Rn1×n1 , A12i(rt ) ∈ Rn1×n2 , A21i(rt ) ∈ Rn2×n1 ,
A22i(rt ) ∈ Rn2×n2 , B1i(rt ) ∈ Rn1×m, B2i(rt ) ∈ Rn2×m are known
constant matrices. ∆A11i(rt , t) ∈ Rn1×n1 , ∆A12i(rt , t) ∈ Rn1×n2 ,
∆A21i(rt , t) ∈ Rn2×n1 , ∆A22i(rt , t) ∈ Rn2×n2 are parameter un-
certainties and f (x(t), rt ) ∈ Rm represents unknown nonlinear
function.

Define

x(t) =

[
x1(t)
x2(t)

]
, E(ε) =

[
In1 0n1×n2

0n2×n1 εIn2

]
, n = n1 + n2,

∆Ai(rt , t) =

[
∆A11i(rt , t) ∆A12i(rt , t)
∆A21i(rt , t) ∆A22i(rt , t)

]
,

Ai(rt ) =

[
A11i(rt ) A12i(rt )
A21i(rt ) A22i(rt )

]
, Bi(rt ) =

[
B1i(rt )
B2i(rt )

]
.

For the sake of simplicity, in the sequel, for each possible rt =

p ∈ S , we write Ai(rt ) ≜ Ap,i, ∆Ai(rt , t) ≜ ∆Ap,i, Bi(rt ) ≜ Bp,i, and
f (x(t), rt ) ≜ fp(x(t), t). By using a standard fuzzy inferencemethod,
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