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a b s t r a c t

This technical communique considers a practical scenario where a classical estimation method might
have already been implemented on a certain platformwhen one tries to apply more advanced techniques
such as Moving horizon estimation (MHE). We are interested to utilize MHE to upgrade, rather than
completely discard, the existing estimation technique. This immediately raises the question how one can
improve the estimation performance gradually based on the pre-estimator. To this end, we propose a
general methodology which incorporates the pre-estimator with a tuning parameter λ ∈ [0, 1] into the
quadratic cost functions that are usually adopted in MHE. We examine the above idea in two standard
MHE frameworks that have been proposed in the existing literature. For both frameworks, when λ = 0,
the proposed strategy exactly matches the existing classical estimator; when the value of λ is increased,
the proposed strategy exhibits a more aggressive normalized forgetting effect towards the old data,
thereby increasing the estimation performance gradually.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

MHE is an optimization-based framework to handle constraints
in estimation (Chu, Chen, & Marquez, 2007; Chu, Keshavarz,
Gorinevsky, & Boyd, 2012; Dissanayake, Sukkarieh, Nebot, &
Durrant-Whyte, 2001; Ge & Kerrigan, 2016; Ko & Bitmead, 2007;
Mahata & Söderström, 2004; Rawlings & Mayne, 2009). Various
forms of MHE have been proposed in the literature. For example,
in Kong and Sukkarieh (2018b) and Rao, Rawlings, and Lee (2001),
the cost is optimized over the initial state and the process noise
sequence. Some MHE frameworks estimate only the initial state
(Alessandri, Baglietto, & Battistelli, 2003; Sui & Johansen, 2014; Sui,
Johansen, & Feng, 2010). Other limited memory filtering methods
such as the finite impulse response (FIR) filter have also been
developed (Ahn, Shi, & Basin, 2016; Shmaliy, Zhao, & Ahn, 2017).
Both MHE and FIR filters only use recent measurements within
a time window. A major difference between them is that the
information contained in the measurements outside the moving
horizon is captured by the arrival cost in MHE (Rao et al., 2001),
such information, however, is completely ignored in FIR filtering.

A situation that one often encounters when trying to apply
MHE is that some traditional estimators might have already been
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implemented. For example, there would be some forms of Kalman
filters embedded in today’s most GPS devices. Replacing the ex-
isting estimation methods and related software and hardware by
MHE is often time consuming and costly, if possible. A similar
situation is faced by control engineers and this hasmotivated some
works to combine the merits of predictive and linear methods
(Hartley & Maciejowski, 2013; Kong, Goodwin, & Seron, 2012,
2013). Especially, in Kong et al. (2013), a general framework has
been proposed to gradually improve the control performance using
predictive control, incorporating an existing linear controller. The
question considered in this paper is to propose a MHE framework
to gradually improve the estimation performance based on a pre-
estimator. As such,we borrow the concept that is proposed in Kong
et al. (2013) for the control case, and consolidate the idea in two
MHE frameworks (Alessandri et al., 2003; Rao et al., 2001; Sui et al.,
2010). For both frameworks, we propose a methodology that can
gradually improve the estimation performance with MHE, incor-
porating an existing estimator. The above result is achieved by the
introduction of cost functions parameterized by λ ∈ [0, 1]. When
λ changes, optimizing the cost functions renders a new estimator,
we thus term the framework metamorphic1 MHE (MMHE).

An advantage of the proposed framework is that it can upgrade
an existing classical method using MHE, thereby obtaining the
constraint handling capabilities of MHE and avoiding the trouble
involved in a completely new design of the estimator. A disadvan-
tage of the proposed framework, compared to classical estimation

1 As noted in Kong et al. (2013), metamorphism is the recrystallization of pre-
existing rocks due to physical/chemical changes.
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techniques, is that one has to solve an optimization problem at
each sampling instant. Due to limited space, proofs of all theorems
or lemmas are not included and details can be found in Kong
and Sukkarieh (2018a). The remainder of the paper is organized
as follows. In Sections 2–3, we embellish the metamorphic con-
cept with the MHE frameworks of Alessandri et al. (2003), Rao
et al. (2001) and Sui et al. (2010), and present some analysis
thereof, respectively. Section 4 uses simulation results to illus-
trate the proposed strategy. Conclusions are drawn in Section 4.
Notation: [a1, . . . , an] denotes [aT1 · · · aTn]

T, where a1, . . . , an are
scalars, vectors or matrices of proper dimensions; I

j
i denotes the

set of integers between i and j; a set U ⊂ Rn is a C -set if it is
a compact, convex set containing the origin in its (non-empty)
interior; diag(M1, . . . ,Ms) denotes a block diagonal matrix with
M1, . . . ,Ms as its block diagonal entries, and diagN (·) denotes a
block diagonal matrix with N blocks. 1n denotes a n-dimensional
column vector with all its elements as 1.

2. Metamorphic MHE

2.1. Embellishing a pre-estimator into MHE

Consider theMHE framework in Rao et al. (2001) for the system

xk+1 = Axk + Gwk, yk = Cxk + νk (1)

where xk ∈ X ⊂ Rn, wk ∈ W ⊂ Rm and νk ∈ V ⊂ Rp, respectively;
the pair (A, C) is assumed to be observable; the set X is compact
and convex;W and V are both C -sets. Assume that for (1), we have
the following Luenberger observer or stationary Kalman filter:

x̃k+1 = Ãxk + L(yk − ỹk), ỹk = Cx̃k, (2)

where L is chosen such that AL = A − LC is Schur stable. Define
ek+1 = xk+1 − x̃k+1. Then it holds that

ek+1 = ALek + ϑk, (3)

with ϑk = Gwk − Lνk ∈ Q = GW ⊖ LV . Note that Q is also
a C -set since both W and V are C -sets. Given ρ(AL) < 1, there
exists a robust positively invariant C -set E satisfying ALE ⊕ Q ⊆

E for system (3) (see Rawlings & Mayne, 2009, pp. 377). Define
xek = [̃xk, ek] and wk = [wk, vk]. From (1), (2), and (3), we have
the augmented system

xek+1 = Aexek + Gewk, yk = Cexek + νk, (4)

where

Ae =

[
A LC
0 AL

]
, Ge =

[
0 L
G −L

]
, Ce =

[
C C

]
.

For (4), we have xek ∈ X , wk ∈ W,whereX = X ×E , W = W ×V.
The variables (xek, wk, yk, νk) in (4) represent the parameters of
the real augmented process, and we denote (χ e

k , ωk, ηk, υk) and
(̂xek, ŵk, ŷk, ν̂k) as the corresponding decision variables and the
optimal solutions in the optimization, respectively. For system (4),
consider the constrained estimation problem

MT :

⎧⎨⎩ min
χe
T−N ,ωT−1

T−N

−→
φ T s.t. χ e

k ∈ X , k ∈ I T
T−N

ωk ∈ W , υk ∈ V, k ∈ I T−1
T−N

, (5)

where χ e
k = χ e(k; χ e

T−N , ωk−1
T−N ), υk = yk − Cχ e

k , λ ∈ [0, 1],
ωT−1

T−N = {ωi}
T−1
i=T−N ,

−→
φ T = λ(χ e

T−N − x̂emT−N )Φ
−1
T−N (χ

e
T−N − x̂emT−N ) + λ

−→
φ ∗

T−N

+

T−1∑
k=T−N

[
(1 − λ)ωT

kMωk + λ(υT
kR

−1υk + ωT
kQ

−1ωk)
]
,

in which R,Q ,M > 0; ΦT−N is a positive definite matrix that is
to be discussed in the sequel;

−→
φ ∗

T−N is the optimal cost of (5) at
time T − N , and thus is a constant parameter and can be safely
ignored in the optimization; x̂emT−N is the optimal moving horizon
state prediction at time T − N , i.e., x̂emT−N = x̂emT−N|T−N−1. When
λ = 0, it holds that

−→
φ T =

∑T−1
k=T−NωT

kMωk. Given 0 ∈ W , the
optimal decision variables are ŵi = 0, for i ∈ I T−1

T−N . In this case,
the optimal decision variables (̂xek, ŵk, ŷk, ν̂k) satisfy x̂ek+1 = Aêxek,
ŷk = Cêxek, i.e., the strategy reduces to a deterministic observerwith
the same gain as the pre-estimator (2). When λ = 1, one has
−→
φ T = (χ e

T−N − x̂emT−N )Φ
−1
T−N (χ

e
T−N − x̂emT−N )

+

T−1∑
k=T−N

[
ωT

kQωk + υT
kR

−1υk
]
,

with Q = diag(Q−1, 0) ≥ 0. Note that this is not a well-posed
problem since positive definiteness is required for the weight on
ωk. Therefore,wewill only consider the cases ofλ ∈ (0, 1). Dividing
−→
φ T by λ gives us:

φT = λ−1−→φ T =

T−1∑
k=T−N

[
ωT

kQ
−1
e ωk + υT

kR
−1υk

]
+(χ e

T−N − x̂emT−N )Φ
−1
T−N (χ

e
T−N − x̂emT−N ),

(6)

where

Q−1
e =

1 − λ

λ
M + diag(Q−1, 0) > 0,

given λ ∈ (0, 1) and M > 0. Moreover, one can consider a
constrained estimation problem which replaces

−→
φ T in (5) with

φT (6). Note that doing so will not affect the optimal solution or
stability.

2.2. Stability ingredients for metamorphic MHE

When one replaces
−→
φ T in (5) with φT (6), the associated ARE for

system (4) is

ΦT = GeQeGT
e + AeΦT−1AT

e − AeReAT
e (7)

with Φ0 as the initial condition, Re = ΦT−1CT
e (R + CeΦT−1CT

e )
−1Ce

ΦT−1, and Qe being defined in (6). Without constraints, one obtains
the metamorphic Kalman filter,

x̂eT = AêxeT−1 + Le(yT − CeAêxeT−1),

where Le = AeΦT−1CT
e (R + CeΦT−1CT

e )
−1. We have the following

results regarding ΦT (7).

Lemma 1. Assume that Q , R,M, Φ0 are positive definite, (A, C) is
observable. For λ ∈ (0, 1), we have Φk > 0, for all k ≥ 0 , if
either of the following two conditions is satisfied: (i) (A,GQ−1/2) is
controllable, and Φ0 ≥ Φ∞; (ii) G and L are both nonsingular.

Theorem 1. Assume that Φ0 is chosen independently of λ, and ΦT is
updated according to the ARE (7). Suppose either of the two conditions
in Lemma 1 is satisfied, i.e., Φk > 0, for k ≥ 0, then for λ ∈ (0, 1), we
have dΦk

dλ ≥ 0.

When Φ0 > Φ∞, the assumption that Φ0 is chosen indepen-
dently of λ can be satisfied by selecting a sufficiently large Φ0.
Therefore, the results in Theorem 1 can be applied for this case.
When Φ0 = Φ∞, Φk = Φ∞, for all k ≥ 0, e.g., Φ0 is dependent
of λ, as Φ∞ is. We have the following results complementary to
Theorem 1.
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