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a b s t r a c t 

We propose a new example of a system with a hyperbolic chaotic attractor. The system is 

composed of two coupled Froude pendulums placed on a common shaft rotating at con- 

stant angular velocity with braking by application of frictional force to one and other pen- 

dulum turn by turn periodically. A mathematical model is formulated and its numerical 

study is carried out. It is shown that attractor of the Poincaré stroboscopic map in a cer- 

tain range of parameters is a Smale – Williams solenoid. The hyperbolicity of the attractor 

is confirmed by numerical calculations analyzing the angles of intersection of stable and 

unstable invariant subspaces of small perturbation vectors and verifying absence of tan- 

gencies between these subspaces. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Hyperbolic theory is a section of the theory of dynamical systems that provides a rigorous mathematical justification 

for chaotic behavior of deterministic systems, both with discrete time (maps) and with continuous time (flows) [1–4] . The 

creation of this theory was, as said by D.V. Anosov, the content of the “hyperbolic revolution” of the 60s of the XX century 

[5] . 

If we talk about dissipative chaotic systems, the hyperbolic theory introduces a special type of attracting invariant sets, 

the uniformly hyperbolic attractors composed exclusively of saddle phase trajectories. For all points on such a trajectory in 

the space of small perturbations (tangent space), we can define a subspace of vectors exponentially decreasing in norm in 

direct time, and a subspace of vectors exponentially decreasing in the evolution in inverse time. An example is the Smale –

Williams attractor, which arises in the state space of a system if a torus-form region undergoes in one discrete time step a 

two-fold longitudinal stretching, transverse compression and folding in a double loop located inside the initial torus. With 

each repetition of the transformation, the number of curls doubles and in the limit tends to infinity, resulting in a so-called 

solenoid with a characteristic Cantor-like transverse structure. An obvious generalization is construction, where at one step 

the folded loop has a different number of turns – three or more. Chaotic nature of the dynamics is determined by the fact 

that the transformation of the angular coordinate in this setup corresponds to an expanding circle map, or the Bernoulli 

map, of the form θn +1 = Mθn ( mod 2 π) , where M ≥ 2. 

∗ Corresponding author. 

E-mail address: vpkrug@yandex.ru (V.P. Kruglov). 

https://doi.org/10.1016/j.cnsns.2018.07.021 

1007-5704/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.cnsns.2018.07.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2018.07.021&domain=pdf
mailto:vpkrug@yandex.ru
https://doi.org/10.1016/j.cnsns.2018.07.021


S.P. Kuznetsov, V.P. Kruglov / Commun Nonlinear Sci Numer Simulat 67 (2019) 152–161 153 

Uniformly hyperbolic attractors are characterized by roughness, or structural stability, by virtue of which the generated 

chaos retains its features under small variations of the system parameters; obviously, this property is desirable and prefer- 

able from the point of view of any plausible application of chaos [6] . A disappointment was that as years passed, it became 

clear that examples of chaotic systems of different nature, which were considered, do not fit into the narrow frame of the 

basic hyperbolic theory. In this situation, the hyperbolic dynamics began to be considered only as a refined abstract image 

of chaos rather than something relating directly to real systems. The deficit of physical examples was overcome in part only 

very recently [7,8] , as instead of searching for “ready-to-use” objects with hyperbolic chaos in nature and technology, we 

turned to a purposeful design of such systems, applying tools of physics and theory of oscillations, as an alternative to the 

mathematical exercises based on topological, geometric, and algebraic constructions. 

Undoubtedly, from the point of view of clarity, among possible examples of hyperbolic chaos we should outline systems 

of mechanical nature as they are easily perceived and interpreted in a frame of our everyday experience [9] . In this article, 

we propose to consider a mechanical system based on two Froude pendulums placed on a common shaft rotating at a 

constant angular velocity been alternately braked by periodic application of frictional forces. As we shall show, with proper 

specification of the system parameters, the Smale – Williams solenoid occurs as an attractor of the Poincaré stroboscopic 

map. Apparently, this system can be implemented in experiment. 

In Section 2 we recall a model of the Froude pendulum, emphasizing the parameter dependence of the frequency of 

self-oscillations, which is essential for further considerations. In Section 3 we turn to constructing a system based on two 

pendulums, which can manifest a hyperbolic chaotic attractor. Equations of the mathematical model are formulated, and 

the operating principle of the system that determines presence of the Smale – Williams attractor in the map describing the 

state transformation is explained. Section 4 presents numerical results of simulating dynamics of the system; particularly, 

waveforms of oscillations and portraits of attractors are presented and discussed in various dynamical regimes, analysis of 

Lyapunov exponents is carried out, and diagrams illustrating transformation of the oscillation phases at successive stages of 

activity of the pendulums are depicted. In Section 5 we also present results of verification of the hyperbolicity of the attrac- 

tor at appropriate selection of the system parameters by analyzing angles of intersection of stable and unstable invariant 

subspaces, confirming the absence of tangencies of these subspaces. 

2. Froude pendulum 

The Froude pendulum ( Fig. 1 a) is a good old example of mechanical self-oscillations [10–14] . Consider a weight of mass 

m on a rod of length l of negligible mass. The rod is attached to a sleeve placed on a shaft rotating at a constant angular 

velocity �. The equation of motion has the form 

ml 2 ẍ + α ˙ x + mgl sin x = M(� − ˙ x ) . (1) 

Here x is an angle of the pendulum displacement from the vertical, α is a coefficient of viscous friction with the surrounding 

medium, l is the distance from the rotation axis to the center of mass, g is the gravity constant, M(� − ˙ x ) is moment of the 

dry friction force between the shaft and the sleeve depending on the value of the relative angular velocity. The form of the 

dependence is assumed to look like shown in the figure in the separate panel being represented by a curve with decrease 

having an inflection point. 

As is often assumed in construction of the mathematical model, we suppose that the angular velocity of rotation of the 

shaft � is chosen corresponding to the inflection point, and write the expansion of the function in a Taylor series near this 

point: 

M(� − ˙ x ) ≈ M(�) − M 

′ (�) ̇ x − 1 
6 

M 

′′′ (�) ̇ x 3 = M 0 + A ̇

 x − B ̇

 x 3 . (2) 

Then the equation takes the form 

ẍ − A − α

ml 2 
˙ x + 

B 

ml 2 
˙ x 3 + 

g 

l 
sin x = 

M 0 

ml 2 
. (3) 

When introducing the dimensionless quantities 

t ′ = ω 0 t = t 
√ 

g 
l 
, d = 

α
ml 2 ω 0 

, 

a = 

A 
ml 2 ω 0 

, b = 

Bω 0 
ml 2 

, μ = 

M 0 

ml 2 ω 2 
0 

(4) 

we obtain 

ẍ − (a − d − b ̇ x 2 ) ̇ x + sin x = μ. (5) 

Now the dot denotes differentiation with respect to the dimensionless time t ′ , and the prime will always be omitted in 

further notations. 

If a − d > 0 , then self-oscillations arise in the system. On the phase plane ( Fig. 2 a) at each particular parameter value the 

self-oscillatory mode is represented by an attractive closed trajectory (limit cycle) around the equilibrium state O at (x, ˙ x ) = 

( arcsin μ, 0) . For small amplitude, a frequency of the self-oscillations is close to the natural frequency of the oscillator 

f = (2 π) −1 . With growth of a − d, the limit cycle increases in size, and the frequency f decreases. This is due to the fact that 
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