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where 2 C R is a bounded smooth domain, @ > 0 and ¢ > 0 are constants,
J is a continuous and nonnegative dispersal kernel, p(u) is a harvesting response
function which satisfies Holling type II growth condition, and h(z) is the harvesting
distribution function which may be zero in some subdomain of 2. We first establish
the existence and uniqueness of positive stationary solutions. Then we show that
when the intrinsic growth rate a is larger than the principal eigenvalue of the
protection zone, then the population is always sustainable; while in the opposite
case, there exists a maximum allowable catch to avoid the population extinction.
The existence of an optimal harvesting pattern is also shown.
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1. Introduction

In this paper we consider the nonlocal dispersal reaction—diffusion equation with spatially non-
homogeneous harvesting

uy = Du+ au(l —u) — ch(z)p(u), in 2 x (0,00),
u(z,t) =0 in RV \ 2 x (0,00), (1.1)
u(z,0) = ug(z), in {2,
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where the function wu(z,t) represents the density of a species at location 2 and time ¢; the habitat of the
species is a bounded smooth domain {2 of RY; the constant a > 0 is the intrinsic growth rate. The harvesting
effort is described by the term ch(x)p(u) and ¢ > 0 is the harvesting rate, p(u) is a harvesting response
function which satisfies Holling type II growth condition, h(z) is the harvesting distribution function which
may be zero in some subdomain () C (2, i.e. () is a protection zone of the species. The initial function
up(z) € C(£2) is nonnegative and nontrivial, and

Du(x,t) = /RN J(x — y)u(y, t)dy — u(x, t) (1.2)

represents the nonlocal dispersal operator with continuous and nonnegative dispersal kernel J. Throughout
this paper, we make the following assumptions on J, p and h:

(J) The kernel J is assumed to be a C(R¥) function with a compact support. Moreover, J(0) > 0,.J > 0,
J(—z) = J(z) and [,y J(x)dz = 1;

(p) p€ CY[0,+0)),p(0) = 0,p'(u) > 0 for u € [0,00), and lim,_,~ p(u) = 1; and

(h) h € L*°(2),0 < h(z) < M for z € 2 and some M > 0, and [, h(z)dx = 1, where M is the maximum
harvesting density at any location .

For simplicity, we assume that
_u
Cbtu
For more detailed background of this model, the readers can refer to [1-4] and [5]. Set

p(u)

2y = {x € 2|h(z) =0},

and assume that 2y C {2 has a smooth boundary. Then {2y can be looked as a protection zone or no-harvesting
zone. Since h(x) satisfies the condition (h), then we have

1— /Qh(:c)d:v < M(|2] - |)),

where [£2] is the Lebesgue measure (area if in R?) of a region 2.
A solution of (1.1) which is time independent is called a stationary solution. We are interested in the

positive stationary solutions of (1.1) and so we consider the nonlocal equation
Jan J(@ = y)u(y)dy — u(x) + au(l — u) — ch(z)p(u) =0, in 2, 13)
u(z) =0 in RV \ 0. -

By a solution to (1.3) we mean a function u € L'(R") which verifies (1.3) almost everywhere. If u > 0 in
2, we say it is a positive solution.

Note that the problem (1.1) can be viewed as the nonlocal dispersal counterparts of the following problem
associated to random dispersal operator

uy = Au+ au(l —u) — ch(z)p(u), in 2 x (0,00),
u(z,t) =0, on 912 x (0,00), (1.4)
u(z,0) = up(x), n £,

The readers can refer to [5] where the corresponding Neumann boundary value problem of (1.4) was
investigated.
Let A (£2)) be the principal eigenvalue of

Ap+Ap =0, in (X,
p =0, in 0y N 0N,

99 _

0, mn 082y N 1.
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