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h i g h l i g h t s

• We proposed a Poisson model for capturing persistence in panel counts.
• The model controls for dynamics, latent heterogeneity and serially correlated errors.
• In our empirical analysis we used data on patents granted.
• All sources of persistence were present with the serial error correlation being the strongest.
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a b s t r a c t

We propose a Poisson regression model that controls for three potential sources of persistence in panel
count data; dynamics, latent heterogeneity and serial correlation in the idiosyncratic errors. We also
account for the initial conditions problem. Formodel estimation, we develop aMarkov ChainMonte Carlo
algorithm. The proposed methodology is illustrated by a real example on the number of patents granted.
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1. Introduction

There is a vast econometrics literature on the analysis of count
data (Winkelmann, 2008; Cameron and Trivedi, 2013). In this
paperwepropose a Poissonmodel that accounts for three potential
sources of the persistent behaviour of counts across economic
units; true state dependence, spurious state dependence and serial
error correlation.

True state dependence is modelled through a lagged dependent
variable that controls for dynamic effects, spurious state depen-
dence is captured by a latent random variable (Heckman, 1981)
that controls for unobserved heterogeneity, while serial correla-
tion in the idiosyncratic errors is assumed to follow a first-order
stationary autoregressive process. The resulting model specifica-
tion is a dynamic panel Poisson model with latent heterogeneity
and serially correlated errors.
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We also account for an inherent problem in our model, that of
the endogeneity of the initial count for each cross-sectional unit
(initial conditions problem). The assumption of exogenous initial
conditions produces biased and inconsistent estimates (Fotouhi,
2005). To tackle this problemwe apply the approach ofWooldridge
(2005) that attempts to model the relationship between the unob-
served heterogeneity and initial values.

In the context of Poisson regression analysis of event counts,
researchers have proposed dynamic Poisson models with unob-
served heterogeneity (Crépon and Duguet, 1997; Blundell et al.,
2002) in order to disentangle true and spurious state dependence.
Yet, the issue of persistence (true state dependence, spurious state
dependence, serial error correlation) as well as the initial values
problem have not been properly addressed in panel counts. This
paper aspires to fill this gap.

To estimate the parameters of the proposed model, we develop
a Markov Chain Monte Carlo (MCMC) algorithm, the efficiency of
which is evaluatedwith a simulation study.We also conductmodel
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comparison. Our methodology is illustrated with an empirical ex-
ample on patenting.

The paper is organized as follows. In Section 2 we set up the
proposed model and in Section 3 we describe the posterior anal-
ysis. The empirical results are presented in Section 4. Section 5
concludes. An Online Appendix accompanies this paper.

2. Econometric framework

Let yit be the observed count outcome for individual i =

1, . . . ,N at time t = 1, . . . , T , that follows the Poisson distribution
with conditional mean λit

f (yit; λit ) =
λ
yit
it exp(−λit )

yit !
. (1)

For λit we assume the following exponential mean function

λit = exp(x′

itβ + γ yit−1 + ϕi + ϵit ), (2)

where xit = (x1,it , . . . , xk,it )′ is a vector of exogenous covariates1
that contains an intercept, ϕi denotes the individual-specific ran-
dom effect that controls for spurious state dependence, whereas
the coefficient on yit−1 measures the strength of true state depen-
dence.

Since yit is non-negative, a positive coefficient γ makes the
model explosive as γ yit−1 > 0. To overcome this problem we
replace yit−1 in (2) by its logarithm, ln yit−1, and then use a strictly
positive transformation y∗

it−1 of the yit−1 values, when yit−1 = 0. In
particular, we rescale only the zero values of yit−1 to a constant c ,
that is, y∗

it−1 = max(yit−1, c), c ∈ (0, 1); see also (Zeger and Qaqish,
1988). Therefore, expression (2) is replaced by

λit = exp(x′

itβ + γ ln y∗

it−1 + ϕi + ϵit ). (3)

For the idiosyncratic error terms ϵit , we assume the following
first-order stationary (|ρ| < 1) autoregressive specification

ϵit = ρϵit−1 + vit , − 1 < ρ < 1, vit
i.i.d
∼ N(0, σ 2

v ). (4)

The random variables vit are independent and identically nor-
mally distributed across all i and t withmean zero and variance σ 2

v .
We also assume that vit and ϕi are mutually independent.

To tackle the initial values problem we follow the approach
of Wooldridge (2005) and model ϕi as follows

ϕi = h1 ln y∗

i0 + x′

ih2 + ui, ui ∼ N(0, σ 2
u ), i = 1, . . . ,N. (5)

As before, if the first available count in the sample for indi-
vidual i, yi0, is zero, it is rescaled to a constant c , that is, y∗

i0 =

max(yi0, c), c ∈ (0, 1). Also, xi is the time average of xit and ui is a
stochastic disturbance, which is assumed to be uncorrelated with
yi0 and xi. For identification reasons, time-constant regressors that
maybe included in xit should be excluded from xi.

To conduct Bayesian analysis we impose priors over the param-
eters (δ, h, ρ, σ 2

v , σ 2
u ),

p(δ) ∝ 1,h ∼ Nk+1 (̃h, H̃),

ρ ∼ N(ρ0, σ
2
ρ )I(−1,1)(ρ), σ−2

v ∼ G(
e1
2

,
f1
2
), σ 2

u ∼∼ IG(
e0
2

,
f0
2
),

where δ = (β′, γ )′, h = (h1,h2)′, G denotes the gamma distri-
bution and IG denotes the inverse gamma distribution. The prior
distribution for δ is flat. A truncated normal is imposed on ρ.

1 Addressing the issue of potential violation of the exogeneity assumption in the
context of the proposed model is a changeling econometric task and thus is left for
future research; see also (Biewen, 2009) for potential treatment.

Table 1
Empirical results for the competing Poisson models.

model 1 model 2 model 3 model 4

constant 0.1249 0.0632 −0.1350 0.0294
(0.1072) (0.1153) (0.2030) (0.0303)

ln y∗

it−1 0.0936* 0.2448* 0.9311*
(0.0325) (0.0248) (0.0082)

SS −0.0173 0.0264 0.4325* 0.0312*
(0.0689) (0.0657) (0.1218) (0.0120)

ln SIZE −0.0369 −0.0012 0.2843* 0.0205*
(0.0291) (0.0316) (0.0511) (0.0059)

ln R0 0.2998* 0.3504* 0.4205* 0.2427*
(0.0697) (0.0637) (0.0588) (0.0487)

ln R1 −0.0720 −0.0777 −0.0380 −0.1659*
(0.0706) (0.0718) (0.0701) (0.0681)

ln R2 0.0396 0.0670 0.1157 −0.0514
(0.0641) (0.0661) (0.0660) (0.0646)

ln R3 0.0096 0.0090 0.0373 −0.0294
(0.0624) (0.0608) (0.0597) (0.0599)

ln R4 0.0281 0.0151 0.0142 0.0062
(0.0579) (0.0541) (0.0538) (0.0540)

ln R5 −0.0183 0.0285 0.0488 0.0337
(0.0503) (0.0443) (0.0421) (0.0361)

YEAR=1976 −0.0384 −0.041* −0.0457* −0.0222
(0.0227) (0.0177) (0.0179) (0.0176)

YEAR=1977 −0.0327 −0.0372* −0.0501* 0.0059
(0.0273) (0.0181) (0.0182) (0.0177)

YEAR=1978 −0.1457* −0.1611* −0.1776* −0.1129*
(0.0294) (0.0192) (0.0189) (0.0182)

YEAR=1979 −0.2002* −0.1774* −0.2316* −0.0453*
(0.0341) (0.0213) (0.0199) (0.0185)

σ 2
u 0.1091* 0.1481* 0.9942*

(0.0386) (0.0208) (0.0963)

σ 2
v 0.0355*

(0.0037)

ρ 0.8311*
(0.0751)

BIC −1390.21 −1411.47 −1432.98 −1439.74
CV 0.2095 0.1748 0.1744 0.1612

*Significant based on the 95% highest posterior density interval.
Standard deviations in parentheses.

3. Posterior analysis

3.1. MCMC algorithm

To estimate the model parameters, we follow closely the pa-
per by Chib and Jeliazkov (2006) and develop a similar MCMC
algorithm that augments the parameter space (Tanner and Wong,
1987) to include the latent variables {λ∗

it}i≥1,t≥1, whereλ∗

it = w′

itδ+
ϕi + ϵit and w′

it = (x′

it , ln y∗

it−1).
The details of the estimation method are given in the Online

Appendix, where we also conduct a Monte Carlo experiment.

3.2. Model comparison

For model comparison we compute the marginal likelihood
(ML). There are many ways to do that. One popular numerical
method is the method of Chib (1995) and (Chib and Jeliazkov,
2001); see, also, (Chib et al., 1998). In this paper we use the
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