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H I G H L I G H T S

• A diffusion model is proposed at temperatures above (T > TD) and below (T < TD) the Debye temperature.

• At T > TD diffusion can be described in localized melting terms.

• At T < TD diffusion occurs as a result of fluctuation formation of a hollow diffusion corridor.

• The effect of reduced diffusion activation energy at low temperatures explained.
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A B S T R A C T

The paper offers a phenomenological model of volume self-diffusion and interstitial diffusion at high (T > TD)
and low (T < TD) temperatures (where TD stands for the Debye temperature). Diffusion mechanisms at high and
low temperatures were shown to differ greatly. Diffusion at high temperatures occurs as a result of fluctuations
that can be described in the localized melting terms – 'liquid diffusion corridor' formation. At low temperatures
when melting is difficult for a number of reasons, diffusion occurs through a 'hollow diffusion corridor' formed
by fluctuation. Activation energy calculations for self-diffusion agree well with the T > TD experiment and show
a dramatic increase in the activation energy at T < TD. Interstitial diffusion activation energy calculated for BCC
metals agrees well with the experiment of the whole temperature range and helps to explain why diffusion
activation energy goes down at low temperatures.

1. Introduction

To date, experimental data on volume self-diffusion in various metal
systems at high temperatures T≥ 0.5Tm (Tm stands for material melting
temperature) is extensive [1–11]. Experimental values of volume self-
diffusion activation energy Qvs that are generally obtained while
studying diffusion permeability at 0.4–0.9Tm lie within the 18–20 kTm

range [1–4].
A vacancy mechanism is traditionally used to provide a theoretical

description of volume self-diffusion and interstitial diffusion. According
to the classical concept of diffusion mass transfer mechanisms observed
in the crystal lattice, a diffusing atom shall jump into the vacancy
formed. This concept brings the following volume self-diffusion coef-
ficient expression [2–4]:

Dvs=Dvs0 exp(-(Q1s + Q2s)/kT) (1)

Dvs0= fza2ν0exp((S1s + S2s))/k (2)

where Dvs0 is the pre-exponential factor; f∼ 1 is the correlation factor;

z is the coordination number; ν0 is the frequency of atomic vibrations;
Q1s and S1s are the energy and entropy of vacancy formation; Q2s and
S2s are the energy and entropy of vacancy migration.

Unlike volume self-diffusion, interstitial diffusion in BCC metals is
experimentally studied over a wider temperature range: apart from
Т≥0.4–0.5Tm temperatures generally used to study diffusion, inter-
stitial diffusion was studied at lower temperatures (∼0.2Tm). As a rule,
indirect methods are applied to this end. One of those methods is based
on studying principles of internal friction [12,13]. It is traditionally
assumed that interstitial diffusion is the reason for two internal friction
peaks in BCC metals: Snoek peak at temperatures close to 0.2Tm and
Snoek-Koster peak at 0.3–0.4Tm temperatures [12,13]. Standard
methods help to identify interstitial diffusion activation energy and in
some cases, the concentration of impurity atoms in a solid solution
[1–4]. However, it should be emphasized that the values of diffusion
activation energies in atoms of one and the same interstitial impurity
obtained for those temperature ranges differ greatly [13]. Thus, when
studying Snoek relaxation for carbon atoms in iron [13], the values of
interstitial diffusion activation energy were obtained within the range
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of Qvi∼5.1–5.5 kTm, where as the Snoek-Koster relaxation values stood
higher at Qvi∼8–9 kTm.

An interstitial mechanism is used to provide a theoretical descrip-
tion for interstitial diffusion [2–4]. It is assumed that interstitial atoms
need no vacancies for a diffusion jump as they spend energy only on
migration from one interstitial space to another. The expression for
interstitial impurity diffusion coefficient runs as follows:

Dvi=D0viexp(-Q2i/kT) (3)

where Dvi0 is the pre-exponential factor, Q2i is the interstitial atom
migration energy.

Rigorous calculations for vacancy formation energies Q1s and mi-
gration energies Q2s and Q2i are rather complicated based on the initial
principles and generally require adjustable ill-defined parameters [14].
Therefore there is a whole series of phenomenological models proposed
to assess diffusion activation energy values. However, despite much
effort current methods are still not efficient enough to calculate volume
diffusion parameters in pure metals [14]. Paper [15] proposes a way to
describe grain boundary self-diffusion at high temperatures in melting
terms (see earlier papers [16,17]). Paper [15] shows that in order to
ensure diffusion mass transfer in the grain boundary it is enough to melt
a small portion (in size close to an inter-atomic distance) of the grain
boundary through fluctuations and to transfer the atom in the melt.
This model helped to achieve reasonable values of grain boundary self-
diffusion activation energy for a wide range of pure metals.

The core idea of this paper is to apply the approach developed in
paper [15] to describe volume self-diffusion and interstitial diffusion
and based thereon to calculate volume self-diffusion activation energy
in FCC and BCC pure metals and interstitial impurity diffusion energy in
BCC metals.

2. Model of diffusion at high temperatures (T > TD)

2.1. Self-diffusion

Similar to the way it was done in Ref. [15], let us assume that to
ensure diffusion transfer of an atom in the crystal over a distance of the
crystal lattice parameter, it is essential first to form a vacancy in the
neighboring lattice site, second to melt a 'diffusion corridor' between a
diffusing atom and a vacancy, and third to ensure migration of a dif-
fusing atom along the resulting melt site. Diffusion activation energy
value in this case may be presented as follows:

= + +Q Q Q Qvs
1

1s ms Ls (4)

where Q1s is the vacancy formation energy; Qms is the 'diffusion cor-
ridor' melting energy; QLs is the melt diffusion activation energy. To
determine Q1s and QLs values, table values provided in Refs. [14] and
[15,18] respectively can be used. To assess Qms, following the ap-
proaches developed in Ref. [15], let us present the 'diffusion corridor'
formation enthalpy as a combination of two members: bulk melting
energy and surface energy:

Qms= λρV∗+γS/LS∗ (5)

where λ is the specific heat of melting, ρ is the mass density, γS/L is the
liquid-crystal surface energy [15], V∗ and S∗ stand for the volume and
area of the corridor surface.

Let us assume that the molten area is shaped like a cylinder with
atomic radius rs and length corresponding to interatomic distance b. In
this case, V∗= πrs2b and S∗=2π(rs2+ rsb). Plugging (5) in (4) with
due regard to the above relations for V∗ and S∗ we shall get:

Qms= πrs2bλρ+2π(rs2+ rsb)γS/L (6)

Values of all the members constituting formula (4) that are calcu-
lated by formula (4), as well as volume diffusion activation energy
values for a number of pure metals are presented in Tables 1 and 2

respectively. As shown in Table 2, experimental values of volume self-
diffusion energy agree well with those calculated by formula (4).

2.2. Diffusion of interstitial atoms

We shall apply the above approach to describe volume interstitial
diffusion. As in case of volume self-diffusion, a liquid 'diffusion corridor'
is required with atomic radius ri and length equal to the distance be-
tween neighboring interstitial sites. (This distance is generally similar
to interatomic distance b). Interstitial diffusion activation energy Ql

vi
can be written as follows:

= + +Q Q Q Wl
vi mi Li e (7)

As above (see (5)), liquid 'diffusion corridor' formation energy Qmi

can be calculated by the following formula:

Qmi= πri2bλρ +2π(ri2+ rib)γS/L (8)

where QLi is the interstitial diffusion activation energy in the melt; We is
the elastic strain energy associated with dimensional discrepancy be-
tween an interstitial atom with radius ri and an interstice with radius rp
where the atom is placed. At first approximation We is as follows:

= ( )ΔW K V
V /2e

e

2

(9)

where K is the bulk modulus of elasticity [18].
In turn, (ΔV/V)e values are composed of three members: geometric

contribution (ΔV/V)g, thermal expansion contribution (ΔV/V)T and
contribution related to volume jump during melting: (ΔV/V)e =(ΔV/
V)g - (ΔV/V)T - (ΔV/V)M.

The geometric contribution (ΔV/V)g is equal to the difference in
volume between an octahedral (tetrahedral) interstice Vp and an in-
terstitial atom in BCC lattice Vi at zero temperature (ΔV/V)e=(Vp–Vi)/
Vp= 1-(ri/rp)3. The thermal expansion contribution at first approx-
imation can be presented as follows: (ΔV/V)T=N∗βΔТ, where β is the
coefficient of volume expansion, N∗ is the number of atoms surrounding
the interstitial atom. The contribution (ΔV/V)M related to volume jump
during melting ΔVm/V (for metals it is several percent ΔVm/V∼4–6%
[15]) in the liquid 'diffusion corridor' equals N∗ΔVm/V. In this case the
expression for (ΔV/V)e runs as follows:

(ΔV/V)e =(ΔV/V)g - N∗(βΔТ + ΔVm/V) (10)

At Т=0.5Tm and N∗=6, ri= 0.77 nm, rp= 0.66 nm, Vm=0.05,
βΔТ∼0.05 we get (ΔV/V)e∼0.01. Subject to such (ΔV/V)e, We calcu-
lated by formula (9) with due regard to (10) at KΩ/kTm∼80 [20] is
very small∼10−3 kTm. This means that during formation of a 'diffusion
corridor' by melting, the contribution of elastic strain energy We to Qvi

l

may be neglected.
In this case the interstitial diffusion activation energy shall be de-

termined by two members: energy required to create a 'diffusion cor-
ridor' Qmi and interstitial migration activation energy in the melt QLi.
Theoretical values of the diffusion activation energy calculated by
formula (7) for interstitial atoms in various metal systems are presented
in Tables 3 and 4. Tables show that they agree satisfactorily with ex-
perimental data on diffusion of impurity atoms at high temperature
[1–4].

2.3. Discussions of the liquid diffusion corridor model

Let us discuss the conditions for applicability of the above model. In
line with Lindemann model [26], the atom oscillation energy in the
crystal atoms with mа mass W∼mах

2ν2/2 shall reach some limit value
W∗. As shown in Ref. [26], this is possible when the frequency of atom
oscillations ν reaches its limit value – the Debye frequency νD, and the
amplitude of oscillations x reaches some limit value хmax.

Chances to reach maximum frequency and amplitude of oscillations
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