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A B S T R A C T

Water can become contaminated as a result of a leak from a nuclear facility, such as a waste facility, or from
clandestine nuclear activity. Low-level on-line radiation monitoring is needed to detect these events in real time.
A Bayesian control chart method, Shiryaev-Roberts (SR) procedure, was compared with classical methods, 3-σ
and cumulative sum (CUSUM), for quantifying an accumulating signal from an extractive scintillating resin flow-
cell detection system. Solutions containing 0.10–5.0 Bq/L of 99Tc, as −TcO99

4 were pumped through a flow cell
packed with extractive scintillating resin used in conjunction with a Beta-RAM Model 5 HPLC detector. While

−TcO99
4 accumulated on the resin, time series data were collected. Control chart methods were applied to the data

using statistical algorithms developed in MATLAB. SR charts were constructed using Poisson (Poisson SR) and
Gaussian (Gaussian SR) probability distributions of count data to estimate the likelihood ratio. Poisson and
Gaussian SR charts required less volume of radioactive solution at a fixed concentration to exceed the control
limit in most cases than 3-σ and CUSUM control charts, particularly solutions with lower activity. SR is thus the
ideal control chart for low-level on-line radiation monitoring. Once the control limit was exceeded, activity
concentrations were estimated from the SR control chart using the control chart slope on a semi-logarithmic plot.
A linear regression fit was applied to averaged slope data for five activity concentration groupings for Poisson
and Gaussian SR control charts. A correlation coefficient (R2) of 0.77 for Poisson SR and 0.90 for Gaussian SR
suggest this method will adequately estimate activity concentration for an unknown solution.

1. Introduction

Conventional methods to detect radionuclides in water involve
collecting samples, transporting them to a laboratory, concentrating the
analyte of interest, and finally applying detection methods to quantify
the radioactivity. This process can take several days to a week to pro-
cess depending on the radionuclide and desired detection limit, sig-
nificantly delaying detection of these events. Thus, an on-line radiation
monitoring system is necessary that can simultaneously concentrate
and detect radionuclides to discover these events in real-time.

One such method is an extractive scintillating resin flow cell cou-
pled to a photomultiplier tube based detection system, which has been
developed for alpha- and beta-emitters (DeVol et al., 2000, 2001a,
2001b; Egorov et al., 1999; Seliman et al., 2011, 2013; Duval et al.,
2016). In this method, radioactivity selectively accumulates on the
sensor as a solution passes through the flow cell while on-line count rate
data are simultaneously collected. A stable background count rate with
statistical fluctuation is observed when no radioactivity is present on
the resin. However, the count rate increases above background in a

continuously increasing trend as radioactivity accumulates on the resin.
Because it can be difficult to decipher between statistical background
fluctuations and ultra low-level radioactivity accumulation on the resin,
statistical control charts can be applied to data in real-time to make this
distinction.

Control charts are used for process monitoring to quantify whether
data points are within control limits. Control limits are established to
allow for variability in the system due to statistical fluctuations. Data
points inside the control limits are assumed to indicate the system is in-
control, while data points outside of the control limits are assumed to
indicate the system is out-of-control from changes not inherent in the
system. However, statistical fluctuations can cause an out-of-control
alarm, or false positive, that occurs with probability α. A false positive
will always occur during an infinite run with finite, non-zero control
limits. The false positive rate is the frequency that a false alarm occurs
when collecting background measurements. Conversely, the system can
be out-of-control without an alarm, causing a false negative that occurs
with probability β. False negative rate is the number of measurements
collected that should have exceeded the control limit, but did not, in a
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given time interval. False positive and false negative probabilities
cannot simultaneously be minimized as their probabilities are inversely
proportional.

An important measure of control chart performance is the average
run length (ARL). The ARL is defined as the average number of data
points plotted on the control chart before an out-of-control alarm oc-
curs. The ARL is identified as ARL0 when a false positive occurs. ARL0 is
theoretically calculated as the inverse of α (Montgomery, 2009). The
ARL is identified as ARLδ when a series of false negative results occur
before the control limit is exceeded. ARLδ is theoretically calculated as
the inverse of (1-β) (Montgomery, 2009).

Classical control charts–3-σ, cumulative sum (CUSUM), and ex-
ponentially moving average (EWMA)–have been studied for an accu-
mulating signal using an extractive scintillating resin flow cell (Hughes
and DeVol, 2008). Bayesian control charts, which rely on Bayes' the-
orem, were not considered in this prior work. Bayes’ theorem updates
the current state of knowledge by incorporating new information to the
prior state of knowledge using a probabilistic model. Bayesian statistics
was first implemented in nuclear science by Little (1982) to differ-
entiate between background and a low-level activity source. Miller
et al. built a framework for Bayesian hypothesis testing to detect low-
level radioactivity for internal dosimetry and bioassay measurements,
though it could have universal use in health physics (Miller et al., 2000,
2008). The U.S. Environmental Protection Agency (EPA) has also re-
vised and updated its estimates for cancer risk coefficients using
Bayesian statistics (Pawel, 2013). The success of Bayesian statistics
indicates it could be better suited than classical methods for on-line
radiation monitoring. A Bayesian control chart method, Shiryaev-Ro-
berts (SR) procedure, will be compared to classical methods, 3-σ and
CUSUM, in this work for use in on-line radiation monitoring for an
accumulating signal from an extractive scintillating resin flow cell de-
tection system.

2. Materials and methods

2.1. Detection system

The detection system was an extractive scintillator packed flow cell
coupled to a Beta-RAM Model 5 radio-HPLC detector (LabLogic
Systems, Inc., Brandon, FL). The flow cell was made of fluorinated
ethylene propylene (FEP) tubing (1/16″ inner diameter, 1/8” outer
diameter) packed with approximately 50mg of extractive scintillating
resin. The tubing was bent into a U-shape, inserted into the flow cell
holder, and installed in the Beta-RAM. The extractive scintillating beads
were synthesized by copolymerization of an organic fluor (vinyl-NPO)
and methyl styrene via a suspension polymerization process. The beads
were subsequently functionalized with methyldioctylamine (MDOA),
an anion exchange ligand selective for

−TcO99
4 , which constituted the

dual functionality extractive scintillating resin. Preparation of this resin
is described elsewhere (Bliznyuk et al., 2015; Seliman et al., 2015).
Small pieces of glass frit were fitted into each flow cell to prevent resin
from escaping while still allowing solution to flow through. Solution
through a flow cell passing.

Time series data sets were collected in 10-s intervals to establish
loading and detection efficiencies. An internal pump of the Beta-RAM
passed a 5mL solution containing 0.01M HCl and approximately 25 Bq
of 99Tc through flow cells at a rate of 0.93 ± 0.01mL/min. The test
solution was preceded and followed by 5mL 0.01M HCl to establish
average count rates before and after the radioactive solution. These
values were used to calculate a net count rate for the detection effi-
ciency. The effluent from the radioactive solution was collected and
counted for 30min using a Quantulus Liquid Scintillation Spectrometer
(Perkin Elmer, Inc., Waltham, MA) to quantify the loading efficiency,
which had a minimum detectable concentration (MDC) of 7.2 Bq/L
based on a detection efficiency of 97%, background count rate of
6.2 ± 0.5 cpm, and volume of 5mL. The average value of two tests is

reported.
Control chart data were collected in a similar fashion as efficiency

data. The pre-activity-loaded background count rate for each flow cell
was established by pumping at least 100mL of 0.01M HCl through the
flow cell. Once a stable background count rate was observed,
70–500mL of solution containing 0.01M HCl and 0.10–5.0 Bq/L

−TcO99
4 was pumped through the flow cell. The test solution was fol-

lowed by 30mL of 0.01M HCl solution. Effluent was not collected
because it was below the MDC. The loading efficiency was assumed to
be the same as determined above. Upon measurement completion, the
time series data were re-binned to 100-s intervals. This time interval
provided good counting statistics for detecting an increase in count rate
as radioactivity accumulates on the resin and minimized time between
data points so that an increase can be detected. Re-binned time series
data were then passed through statistical algorithms developed in
MATLAB written by the authors. The algorithms calculated 3-σ,
CUSUM, and SR statistics, determined the volume of 99Tc solution
needed to exceed the control limit, and plotted each statistic versus
volume to construct the control charts.

2.2. Control chart design

For 3-σ control charts, count rate data are plotted in real time and
each point is compared to control limits three standard deviations, σ,
above and below the mean count rate, μ (Kennett and Zacks, 1998;
Montgomery, 2009). The system is designated as out-of-control if a data
point falls outside of the +μ σ3 limits. This method has ARL0=741
and theoretical false positive rate =α 0.135% (Montgomery, 2009).

The CUSUM statistic, ci, is the cumulative difference between the
most recent normalized count rate, CRi, and a reference value, k. The
system is designated as out-of-control when the deviation between CRi
and k is greater than the control limit, h (Lucas, 1985). A one-sided
upper CUSUM scheme is used in radiation monitoring, because only an
increase in deviation is of interest. The upper-CUSUM statistic, +ci , is
calculated as

= − ++
−
+c CR k cmax(0, )i i i 1 (1)

(Montgomery, 2009). An upper CUSUM scheme with parameters
=k 0.5 and =h 4.77 corresponded to ARL0= 741 ( =α 0.135%), which is

the same as the 3-σ control chart (Montgomery, 2009).
Derived using Bayes’ theorem, the SR statistic, Wm is calculated by
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where Rj is the likelihood ratio, the probability of an event occurring
divided by the probability of the same event not occurring (Kennett and
Zacks, 1998). Multiplying and summing the likelihood ratio in this
manner allows the newest data point to update the latest SR statistic
such that Bayes' theorem is satisfied. For the case Poisson distributions
estimate the likelihood ratio, the SR statistic becomes
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where CRj is the jth count rate measurement, δ is the size of the shift to
be detected, and m is the measurement number. For the case Gaussian
distributions estimate the likelihood ratio, the SR statistic becomes
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where n is the number of samples collected per data point (Kennett and
Zacks, 1998). SR parameters were =δ 3 and =n 1. Control limits were
established using a computer program written by Kenett and Zacks
(Kennett and Zacks, 1998). Five hundred runs of this program for

=W 700stop produced ARL0= ±784 57 ( = ±α 0.13 0.01%) for Poisson SR
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