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We introduce the imaginary projection of a multivariate polynomial 
f ∈ C[z] as the projection of the variety of f onto its imaginary 
part, I( f ) = {Im(z) : z ∈ V( f )}. Since a polynomial f is stable if 
and only if I( f ) ∩ R

n
>0 = ∅, the notion offers a novel geometric 

view underlying stability questions of polynomials.
We show that the connected components of the complement of 
the closure of the imaginary projections are convex, thus opening 
a central connection to the theory of amoebas and coamoebas. 
Building upon this, the paper establishes structural properties of 
the components of the complement, such as lower bounds on their 
maximal number, proves a complete classification of the imaginary 
projections of quadratic polynomials and characterizes the limit 
directions for polynomials of arbitrary degree.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recent years have seen a lot of interest in stable polynomials, see, e.g., Borcea and Brändén (2008, 
2009), Marcus et al. (2015b), Wagner (2011) and the references therein. A polynomial f = f (z) =
f (z1, . . . , zn) ∈ C[z] = C[z1, . . . , zn] is called stable if every root z satisfies Im(z j) ≤ 0 for some j. We 
call f real stable if f has real coefficients and is stable.

As recent prominent applications, Marcus, Spielman, and Srivastava employed stable polynomials 
in the proof of the Kadison–Singer Conjecture (Marcus et al., 2015b) and in the existence proof of 
families of bipartite Ramanujan graphs of every degree larger than two (Marcus et al., 2015a). Stable 
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polynomials have also been used by Borcea and Brändén to prove Johnson’s Conjecture (Borcea and 
Brändén, 2008) and in Gurvits’ simple proof of a generalization of van der Waerden’s Conjecture for 
permanents (Gurvits, 2008). Moreover, there are strong connections to hyperbolic polynomials and 
their hyperbolicity cones, see Section 2.1.

In this paper, we initiate to study the underlying projections on the imaginary parts from a geo-
metric point of view. Given a polynomial f ∈ C[z], introduce the imaginary projection of f as

I( f ) = {Im(z) : z ∈ V( f )} ⊆ R
n ,

where V( f ) denotes the variety of f and Im(z) = (Im(z1), . . . , Im(zn)). So, in particular, f is stable if 
and only if

I( f ) ∩R
n
>0 = ∅ .

Our work is motivated by the theory of amoebas as well as by the general goal to reveal and 
understand convexity phenomena in algebraic geometry, see Blekherman et al. (2013). Amoebas are 
the images of algebraic varieties in the algebraic torus (C∗)n under the log-absolute map:

A( f ) = {(log |z1|, . . . , log |zn|) : z ∈ V( f ) ∩ (C∗)n} ⊆ R
n ,

see Gelfand et al. (1994). Coamoebas employ the arg-map rather than the log-absolute map; see, e.g., 
Forsgård (2015).

For amoebas, important structural results as well as their occurrences in a broad spectrum of 
mathematical disciplines have been intensively studied, see Mikhalkin (2004), Passare and Rullgård 
(2004), Passare and Tsikh (2005) as well as the recent survey de Wolff (2017). For coamoebas, in-
vestigations are much more recent (Forsgård, 2015; Forsgård and Johansson, 2015; Nisse and Sottile, 
2013). A prominent result states that the complement of an amoeba as well as the complement of 
the closure of a coamoeba consists of finitely many convex components, see Forsgård and Johansson 
(2015), Gelfand et al. (1994). As a key result, which also motivates our study, we show that the clo-
sure of the complement of the imaginary projection of a polynomial consists of finitely many convex 
components as well, see Theorem 4.1.

While there are important analogies among amoebas, coamoebas, and imaginary projections, there 
are also fundamental differences between these structures. The fibers of the log-absolute maps un-
derlying amoebas are compact, whereas for imaginary projections they are not compact. Furthermore, 
the limit directions of amoebas, also known as tentacles, are characterized by the logarithmic limit 
sets and thus carry a polyhedral structure; see Maclagan and Sturmfels (2015, Theorem 1.4.2). In con-
trast, the limit directions of the imaginary projections are not polyhedral in general, see Section 6. 
For coamoebas, which are defined on a torus, Nisse and Sottile have introduced a variant of the log-
arithmic limit sets, by considering accumulation points of arguments of sequences with unbounded 
logarithm (Nisse and Sottile, 2013).

Building upon the fundamental convexity result, we study structural properties of imaginary pro-
jections. We also give lower bounds on the maximal number of components of the complement, see 
Corollary 4.5.

We investigate important subclasses, such as quadratic and multilinear polynomials. For the class 
of real quadratic polynomials, we can provide a complete classification of the imaginary projections, 
see Theorem 5.4. Indeed, this classification result in Theorem 5.4 is somewhat unexpected, since it 
involves various qualitatively different cases.

Starting from the well-known results on tentacles of amoebas, we characterize the limit points 
of the imaginary projections. Contrary to the case of the amoeba of a non-zero polynomial f , it is 
possible that every point on the sphere Sn−1 is a limit direction of the imaginary projection of f . 
For f ∈ C[z], we provide a criterion for one-dimensional families of limit directions at infinity. In the 
case n = 2 this also characterizes the situations that all points are limit points. See Theorem 6.5 and 
Corollary 6.7 for further details.

It is easy to see that real projections of complex polynomials should behave in the same way as 
imaginary projections, since one projection is easily seen to be an instance of the other by replacing 
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