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We investigate the finite-size Dicke model with photon leakage. It is shown that the symmetry breaking 
states, which are characterized by non-vanishing 〈â〉 �= 0 and correspond to the ground states in the 
superradiant phase in the thermodynamic limit, are stable, while the eigenstates of the isolated finite-
size Dicke Hamiltonian conserve parity symmetry. We introduce and analyze an effective master equation 
that describes the dynamics of a pair of the symmetry breaking states that are the degenerate lowest 
energy eigenstates in the superradiant region with photon leakage. It becomes clear that photon leakage 
is essential to stabilize the symmetry breaking states and to realize the superradiant phase without 
the thermodynamic limit. Our theoretical analysis provides an alternative interpretation using the finite-
size model to explain results from cold atomic experiments showing superradiance with the symmetry 
breaking in an optical cavity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Dicke model is one of the quantum optical models that has 
been thoroughly studied [1,2]. It describes a collection of identi-
cal two-level atoms that are coupled with a single electromagnetic 
mode in a cavity via a dipole interaction. The significant property 
of the Dicke model is that it exhibits a transition from a nor-
mal phase to a superradiant phase when the coupling constant 
takes a critical value in the thermodynamic limit [3–6]. Since it is 
known that this phase transition occurs even at zero temperature, 
it is considered to be a quantum phase transition [5,6]. Thanks 
to recent experimental progress in atomic physics, the situations 
described by the Dicke model have been realized in cold atomic 
systems in an optical cavity [7,8], where the collection of cold 
atoms plays the same role as a collection of two-level atoms. In 
these experiments the transition to a superradiant phase is veri-
fied by detecting photons leaking from the cavity. However, this 
transition cannot be identified to be a quantum transition and/or 
thermal transition that is defined in equilibrium infinite-size sys-
tems, since in the cold atom experiments the number of atoms 
is finite and the system is open. Instead, it is suggested that the 
transition in the experiments can be interpreted as a nonequilib-
rium phase transition [7,9,10], the photon leaking being taken into 
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account in the thermodynamic limit. To our best knowledge, this 
dissipative Dicke model has been investigated in a semi-classical 
and (plus) stochastic approach based on the thermodynamic limit. 
The semi-classical approach [7,11] implies that quantum operators 
are replaced with c-numbers and that the superradiant transition 
is described as a bifurcation of the classical solution. We point 
out that this treatment ignores quantum fluctuation, i.e., the quan-
tum entanglement between the atoms and the cavity mode. As 
the stochastic method [11], a stochastic term that represents a 
dissipation is added to the Heisenberg equation in such a phe-
nomenological manner that the stochastic operator of the bosonic 
quasi-particle defined in each of normal and superradiant phases 
is introduced. Strictly speaking, this quasi-particle picture is exact 
only in the thermodynamic limit, where the Hamiltonian becomes 
a corresponding quadratic form. Thus this stochastic method is 
valid only when the system is close to the thermodynamic limit. 
When a finite-size system is under consideration instead of the 
thermodynamic limit, the higher order terms in the Hamiltonian 
that were neglected in the thermodynamic limit may affect the 
quasi-particle picture and the gap in theoretical treatment depend-
ing on whether the phase is either normal or superradiant is unfa-
vorable. Hence, it is still not clear how the superradiant transition 
is explained in the finite-size model with the dissipation. Our anal-
ysis in this paper focuses on a stability of the superradiant state, 
without relying on the thermodynamic limit and the quasi-particle 
picture established then and taking account of quantum fluctua-
tions properly.
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For the isolated finite-size Dicke model, there are some previ-
ous studies on the singularity in the ground state energy associ-
ated with the superradiant phase transition or its finite-size cor-
rections [12–14]. There the model is treated as an isolated system 
without symmetry breaking. In distinction from the previous re-
search, we introduce the interaction of the finite-size Dicke system 
with an environment in this paper and focus on the mechanism 
to realize the symmetry breaking state, which is characterized by 〈
â
〉 �= 0, as observed in the experiments [7,8].

The purpose of this paper is to show that the Dicke model with 
photon leakage exhibits symmetry breaking, even in finite-size sys-
tems. To achieve this, restricting ourselves to small atomic level 
spacing, we first study the ground and first excited states of the 
isolated Dicke model and estimate an energy gap between them, 
because the two states form a pair of degenerate states when the 
superradiant phase is realized. Then, we introduce photon leakage 
out of the cavity to an external vacuum and investigate the tem-
poral evolution of the density matrix in the superradiant region. 
It will be shown that the symmetry breaking state becomes sta-
ble. Thus, photon leakage is crucial for understanding symmetry 
breaking in a finite-size Dicke system.

This paper is organized as follows. In Sec. 2, we briefly intro-
duce the Dicke model and compare the finite-size model with the 
model in the thermodynamic limit. The lowest energy eigenstates 
are constructed under a “polarization condition”, and we have a 
pair of the two almost degenerate states, breaking the parity sym-
metry, in the superradiant region in Sec. 3. Section 4 shows that, 
although the symmetry breaking states are not exact eigenstates, 
they freeze dynamically. Considering the leakage photon, we derive 
and analyze an effective master equation for the two symmetry 
breaking states in the open Dicke model that interacts with the 
environment in Sec. 5 and discuss the stability of the symmetry 
breaking states.

2. Parity symmetry and superradiance

The Dicke Hamiltonian is given by [3–6]

ĤDH = ω0 Ĵ (3) + ωâ†â + λϕc

[(
â + â†

)(
Ĵ+ + Ĵ−)] , (1)

where â denotes the bosonic annihilation operator for the cavity 
mode with frequency ω, and Ĵ (i) (i = 1, 2, 3) are pseudospin op-
erators describing a collection of N identical two-level atoms with 
level spacing ω0; these operators obey angular momentum algebra. 
The Ĵ± operators are defined by Ĵ (1) ± i Ĵ (2) , and, we take J = N/2
for the length of the pseudospin J . The coefficients ω0, ω, and λ
are non-negative. The symbol ϕc stands for the normalization fac-
tor of wave function for cavity mode [3], namely ϕc = 1/

√
2 J . Note 

that we do not neglect the counter-rotating contributions in the 
Hamiltonian (1). As in Ref. [13], we employ the following Hamilto-

nian, transformed by the unitary operator Û = exp
[

i(π/2) Ĵ (2)
]

,

Ĥ = Û ĤDHÛ † = −ω0 Ĵ (1) + ωâ†â + 2λϕc

(
â + â†

)
Ĵ (3) , (2)

because the diagonalized form of the interaction term is conve-
nient for our arguments. The parity transformation in this repre-
sentation is executed by the unitary operator

�̂ = exp
[

i
(

â†â − Ĵ (1)
)
π
]
, (3)

and Ĥ is invariant under the parity transformation �̂, namely 
[Ĥ, �̂] = 0.

In the thermodynamic limit, where N → ∞, the system shows 
two phases that separated by the critical coupling constant λc =√

ω0ω/2 [5,6]. For λ < λc , the system is in the normal phase, 

where the eigenstates are symmetric, that is, they each have a def-
inite parity. For λ > λc , the system is in the superradiant phase 
where the atoms are collectively excited and the light field obtains 
a coherent amplitude. The ground state in the superradiant phase 
breaks the parity symmetry [6], which means that the generation 
of the superradiant phase is interpreted as a spontaneous symme-
try breaking with the nonvanishing order parameter 

〈
â
〉 �= 0.

In the finite-size model that we will focus on, the ground and 
first excited state form a degenerate pair in the superradiant region 
[14,15], which is characterized by closing the energy gap between 
them. It is also reported that the similar pair formation presents in 
the higher excited states [15,16]. These degeneracies occur asymp-
totically as λ increases. It is, as will be shown, essential to form 
symmetry breaking states in the superradiant region.

3. Formation of a degenerate pair in superradiant region

To investigate a degenerate pair with the two lowest states an-
alytically, we will construct the ground and first excited states in 
a perturbative manner. For convenience, we introduce the scaled 
Hamiltonian H̄ ,

H̄ = −ω̄0 Ĵ (1) + ω̄â†â +
(

â + â†
)

Ĵ (3) , (4)

where

ω̄0 = ω0

2λϕc
, ω̄ = ω

2λϕc
. (5)

First, we consider the limiting case of ω̄0 = 0, keeping ω̄ finite. 
In this limit, we can construct all the eigenstates in the following 
way. Since [H̄, Ĵ (3)] = 0, we can represent H̄ in each subspace, 
labeled by the eigenvalue m of Ĵ (3) , as

H̄m = ω̄â†
mâm − m2

ω̄
, (6)

where âm = â + dm, dm = m/ω̄ . Then, the eigenstates of H̄m are 
exhausted by |m〉⊗

(
â†

m

)
n |0m〉/

√
n!, where the coherent state |0m〉

is defined by

â |0m〉 = −dm |0m〉 .

Obviously, there are two orthogonal ground states, 
∣∣∣�(± J )

0

〉
,

∣∣∣�(± J )
0

〉
= |± J 〉 ⊗ ∣∣0± J

〉
. (7)

This ensures ground state degeneracy in our limiting case.
Next, we revive the ω̄0 term while restricting ourselves to the 

assumption 0 < ω̄0 
 1. Then, the ω̄0 term can be regarded as a 
perturbation, which lifts the degeneracy of the two ground states 
at ω̄0 = 0 at the 2 J th-order. Since the non-degenerate eigenstate 
has well-defined parity, we have the ground state +1 (even) parity, 
|�0〉 and the first excited state −1 (odd) parity, |�1〉. Hence, they 
are given by

|�0〉 = 1√
2

[ ∣∣∣�(− J )
0

〉
+
∣∣∣�(+ J )

0

〉 ]
+O(δ) , (8)

|�1〉 = 1√
2

[ ∣∣∣�(− J )
0

〉
−
∣∣∣�(+ J )

0

〉 ]
+O(δ) , (9)

since �̂
∣∣∣�(± J )

0

〉
=
∣∣∣�(∓ J )

0

〉
. Here, δ is estimated as δ = ω̄0ω̄/

√
N =√

Nλ2
c /λ

2 in the leading order. For δ 
 1, or λ � λc N1/4, which we 
will call polarization condition, the terms O(δ) in the expressions 
(8) and (9) are negligible.
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