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Proof-theoretic method has been successfully used almost from the inception 
of interpolation properties to provide efficient constructive proofs thereof. Until 
recently, the method was limited to sequent calculi (and their notational variants), 
despite the richness of generalizations of sequent structures developed in structural 
proof theory in the meantime. In this paper, we provide a systematic and uniform 
account of the recent extension of this proof-theoretic method to hypersequents, 
nested sequents, and labelled sequents for normal modal logic. The method is 
presented in terms and notation easily adaptable to other similar formalisms, 
and interpolant transformations are stated for typical rule types rather than for 
individual rules.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Interpolation was called “about the last significant property of first-order logic that has come to light”2

(Van Benthem [5]). The property was first formulated and proved by Craig in [17,18] and was inspired by 
his post-publication review [16] of Beth’s paper [6] on definability.

The Craig interpolation property for the logic of a given class of models, or CIP for short, states roughly 
that any logical consequence A � B can be supplied with an intermediary statement C, called an interpolant, 
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that sits between A and B in terms of logical consequence, i.e., satisfies A � C and C � B, and uses only the 
language elements common to A and B. This formulation is not entirely formal as one needs to specify which 
elements of the language need to be common. Alternatively, if the logic is defined syntactically rather than 
semantically, one can use D � E instead of D � E. Since in most standard logical languages it is possible 
to define an implication that satisfies modus ponens and the deduction theorem, the usual formulation of 
the CIP uses � D → E instead of D � E.

Similar to decidability, the interpolation property is a desirable but not necessary property of logics. 
Similar to decidability, the CIP fails in some reasonably fundamental logics, e.g., the (predicate) intuitionistic 
logic of constant domains, CD (Mints et al. [51]). On the other hand, many less standard logics often possess 
the property. As with decidability, for logics that fail the Craig interpolation property, it can sometimes 
be weakened to a version that holds, while for other logics, it can be strengthened. We do not intend 
to discuss the complex and intricate hierarchy of interpolation properties, which becomes all the more 
interesting for weaker logics, where distinctions appear between various formulations of the CIP that are 
equivalent for classical propositional logic. Those interested are referred to the monograph by Gabbay and 
Maksimova [26], where the interpolation hierarchy is explored in relation to the corresponding hierarchy of 
algebraic amalgamation properties.

The only alternative variant of the CIP we will consider in this paper is the Lyndon interpolation property, 
or the LIP for short. It was introduced by Lyndon [43] shortly after Craig’s original publication.

To explain the difference, we first need to clarify the notion of common language for logics discussed in 
this paper. As the logics we consider are predominantly monomodal logics based on classical propositional 
reasoning, with an occasional mention of intermediate logics, the natural definition of the common-language 
requirement on interpolants of A and B is that they only contain atomic propositions common to A and B.

Example 1.1. P ∧ Q is an interpolant of A = P ∧ Q ∧ S and B = Q ∨ ¬P for all the logics we consider 
because

• � P ∧Q ∧ S → P ∧Q,
• � P ∧Q → Q ∨ ¬P , and
• both atomic propositions P and Q occurring in the interpolant P ∧ Q occur both in P ∧ Q ∧ S and 

in Q ∨ ¬P .

Lyndon suggested discounting P ∧Q from being an interpolant on the basis that P is not really playing 
the same role in A and B: P is present positively in A but negatively in B. Indeed, in the example above, 
it is clear that the transition from A to B has little to do with P and that Q would equally well play the 
role of a Craig interpolant. Unlike P ∧Q, the formula Q is not only a Craig but also a Lyndon interpolant 
because the only atomic proposition occurring in Q, Q itself, occurs positively there, as well as in A and B.

The polarity of a subformula occurrence in a given formula is a standard notion related to its mono-
tonicity/antimonotonicity with respect to logical consequence. In all the logics we consider, if any positive 
occurrence of B in A(B) is replaced with a formula C such that � B → C, then � A(B) → A(C). Conversely, 
if any negative occurrence of B in A(B) is replaced with C such that � B → C, then � A(C) → A(B). 
Practically, it means that each formula is a positive subformula of itself, the conjunction, disjunction, and 
modalities � and � do not change the polarity of subformula occurrences, e.g., a positive occurrence of B
in A(B) remains positive in A(B) ∧D. The negation flips the polarity of all occurrences within, e.g., a neg-
ative occurrence of B in A(B) becomes a positive occurrence in ¬A(B). Finally, the implication preserves 
the polarity of subformula occurrences in its consequent and flips those in its antecedent, e.g., if B occurs 
positively in A(B) and C occurs negatively in D(C), both become negative occurrences in A(B) → D(C). 
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