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In this paper, I describe and motivate a new species of mathematical structuralism, 
which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the 
name suggests, this approach takes standard Set-Theoretic Structuralism of the sort 
championed by Bourbaki, and removes its ontological commitments by taking an 
instrumental nominalist approach to that ontology of the sort described by Joseph 
Melia and Gideon Rosen. I argue that this avoids all of the problems that plague 
other versions of structuralism.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

In this paper, I’d like to describe and motivate a new species of mathematical structuralism. In the 
philosophy of mathematics, structuralism is a genus of theses concerning the subject matter and ontology 
of mathematics, as well as the correct semantics for mathematical language. Each species that belongs 
to that genus is motivated by the observation that mathematicians are agnostic about the intrinsic or 
internal nature of the objects that they study. In this sense, structuralism is very much a philosophy of 
mathematics that is inspired by and guided by mathematical practice. Mathematicians are indifferent to 
the non-mathematical features of the objects they study. They care only about the so-called structural 
features of those objects. For instance, they care that 2 is less than 3 and that π is transcendental. They do 
not care whether 2, 3, or π is a set or a class of sets, a Dedekind cut in the rationals or an equivalence class of 
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Cauchy sequences of rationals, a universal or a particular, an abstract object or a concrete one, a necessary 
existent or an entity that exists only contingently, and so on. But, while each species of structuralism 
agrees on this indifference, they differ significantly on the ontology and semantics of mathematics that best 
accommodates it.

Why offer a new species of structuralism when the genus is already so crowded? The subject matter of 
mathematics, together with the semantics of mathematical language, has an extensive job description. There 
are many boxes that any candidate ontology and semantics would ideally tick. As we will see, while each of 
the existing species of structuralism ticks many of these boxes, they all leave many untouched. I hope that 
my new version will tick all of the boxes.

My strategy is as follows: I will begin with a species of structuralism as different from my final proposal 
as can be. Then I will raise an objection to that species that will lead us to formulate a new species that 
avoids the objection. But now I will note a objection to this new species, and I will formulate a further new 
species that avoids both objections. And so on. I will repeat this process until we arrive at our new version 
of structuralism, which avoids all objections.

Before we start, a disclaimer: this paper covers quite a lot of ground. Each new tickbox in the job 
description for the subject matter of mathematics deserves, and has received, much more detailed discussion 
than I am able to give it here. But this paper is programmatic — my purpose is to motivate moving to a new 
version of structuralism. So I hope readers will forgive me if I reject their favoured version of structuralism 
without the full discussion they would wish.

1. Structuralism and the axiomatic method

As John P. Burgess [7] argues in detail, structuralism in the philosophy of mathematics is the inevitable 
response to the introduction of the axiomatic method as the fundamental methodology of mathematics 
towards the end of the nineteenth century. And the axiomatic method was, in turn, the inevitable conclusion 
of the quest for greater rigour in mathematics and the attempt to expel geometric, spatial, and other forms 
of intuition from mathematical proofs and definitions. According to the axiomatic method, each area of 
mathematics — real or complex analysis, probability or measure theory, group theory, number theory, 
graph theory, linear algebra, topology, and so on — is characterized by a set of axioms. These pick out the 
items of interest in that area — the real numbers, the complex field, the probability spaces, the groups, the 
natural numbers, the graphs, the vector spaces, the topological spaces, and so on. They do this by spelling 
out the properties shared by all of the items of interest.

If we take a set-theoretic approach, the items of interest are systems. In this context, a system consists 
of an underlying set or a family of underlying sets, perhaps equipped with some distinguished elements 
of those sets, distinguished functions involving those sets, and relations amongst the members of those 
sets. Thus, for instance, Cayley’s group axioms characterise the subject matter of group theory [11]. They 
apply to systems (G, e, ∗), where e is a distinguished element of the underlying set G, and ∗ is a binary 
function on G. Similarly, Dedekind’s axioms for a complete ordered field characterise the subject matter of 
real analysis [13]. They apply to systems (R, 0, 1, +, ×, <), where 0, 1 are distinguished elements of R, +
and × are binary functions on R, and < is a binary relation on R. And Peano’s axioms for a vector space 
characterise the subject matter of linear algebra [37]. They apply to systems (V, K, 0, +V , 0, 1, +K , ×K , ·), 
where 0 is a distinguished element of V , +V is a binary function on V , 0, 1 are distinguished elements of 
K, +K , ×K are binary functions on V , and · is a function defined on K × V . And so on.

On the other hand, if we take a category-theoretic approach, the items of interest are categories, or objects
in categories. There are (at least) four ways in which we might formulate the axiomatic method on this 
approach. On the first, which we might call the category-based approach, the axioms characterise a certain 
sort of category, saying that the items of interest in the area of mathematics in question are all and only 
the categories of this sort. This is close to the set-theoretic approach, except that the axioms are stated in 
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