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We consider a nonlocal elliptic equation arising in a prey–predator model whose 
nonlocal term is singular. We use the Leray–Schauder degree to prove the existence 
of an unbounded continuum of positive solutions emanating from the trivial solution. 
As application, we study nonlocal and singular elliptic equations of the type logistic 
and Holling–Tanner.
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1. Introduction

From the pioneering paper of Furter and Grinfeld [8], nonlocal terms have been included in population 
dynamics models in order to take into account that the variation of the species at a point depends not only 
on the behavior of the species at the point but in the entire environment, see also the recent reference [9]
where a detailed study of models that come from the Biology is carried out. Specifically, in [7] and [12]
a reaction–diffusion–chemotaxis predator–prey mathematical system is proposed to model the interacting 
of two populations, one of amoebae and one of virulent bacteria:

⎧⎨
⎩

ut = D1Δu + u(1 − u− v),

vt = D2Δv − χ∇ · (v∇u) − μv + δv

∫
Ω u(x)v(x) dx∫

Ω v(x) dx
− γuv

1 + τv
,

(1)
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in a habitat Ω, where Ω is a regular subset of RN , with N = 1 or N = 2. In (1), u(x, t) and v(x, t) denote 
the concentration of bacteria and amoebae at time t and position x, respectively. The numbers D1 and D2
represent the diffusion rate of bacteria and amoebae, respectively. χ is a chemotactic coefficient and μ is 
the natural mortality rate of amoebae. The last term of the second equation of (1) is due to the fact the 
bacterial population belongs to a virulent strain, that is, the amoebae are infected by bacteria and they die. 
The authors take this into account by assuming that amoebae are attacked by bacteria following a Holling 
type II function, with handling time τ and killing rate γ. The nonlocal term in (1) describes the fact that 
amoebae behave like a sole organism when food supply is low, in order to redistribute the food among all 
cells; and δ is the growth rate of amoebae.

To study (1), it is convenient to explore the behavior of each equation. Motivated by this, we will analyze
in this paper the following nonlocal equation:

⎧⎨
⎩Lv = λv

∫
Ω A(x)v(x) dx∫

Ω v(x) dx
− g(x, v) in Ω,

v = 0 on ∂Ω,

(2)

where Ω is a bounded and regular domain of RN , A ∈ C(Ω) is a nonnegative and nontrivial function. The 
operator L is a second order uniformly elliptic operator of the form:

L = −
N∑

i,j=1
aij(x)∂i∂j +

N∑
j=1

bj(x)∂j + c(x), (3)

with

aij ∈ C(Ω), aij = aji, bj , c ∈ L∞(Ω), i, j ∈ {1, . . . , N} . (4)

Let us briefly recall that L is a uniformly elliptic operator when there exists a constant α > 0 such that, for 
each x ∈ Ω and ξ = (ξ1, . . . , ξN ) ∈ R

N , we have

N∑
i,j=1

aij(x)ξiξj ≥ α |ξ|2.

In (2) the real number λ is a bifurcation parameter and g : Ω × R → R is a continuous function satisfying 
g(x, 0) ≡ 0 and one of the assumptions:

lim
t→0+

g(x, t)
t

= 0, uniformly in Ω, (5)

or

lim
t→0+

g(x, t)
t

= g0(x), uniformly in Ω, (6)

where g0 : Ω → R is a bounded, nonnegative and nontrivial function.
When the function A is constant, (2) transforms into the local equation:

{
Lv = λAv − g(x, v) in Ω,

v = 0 on ∂Ω.

The bifurcation theory was applied to these types of problems by several authors, with different assumptions 
on g, including (5) and (6), see for instance [2,3,10] and references in those papers.
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