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Abstract

Renz [14], Ouchti [12], El Machkouri and Ouchti [4] and Mourrat [13] have established some tight
bounds on the rate of convergence in the central limit theorem for martingales. In the present paper
a modification of the methods, developed by Bolthausen [1] and Grama and Haeusler [7], is applied
for obtaining exact rates of convergence in the central limit theorem for martingales with differences
having conditional moments of order 2 + ρ, ρ > 0. Our results generalise and strengthen the bounds
mentioned above.
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1. Introduction

Assume that we are given a sequence of martingale differences (ξi,Fi)i=0,...,n, defined on some
probability space (Ω,F ,P), where ξ0 = 0 and {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ-fields. Set

X0 = 0, Xk =
k∑

i=1

ξi, k = 1, ..., n. (1)

Then X = (Xk,Fk)k=0,...,n is a martingale. Let 〈X〉 be its conditional variance:

〈X〉0 = 0, 〈X〉k =
k∑

i=1

E[ξ2i |Fi−1], k = 1, ..., n. (2)

Define
D(Xn) = sup

x∈R

∣∣∣P(Xn ≤ x)− Φ (x)
∣∣∣,

where Φ (x) is the distribution function of the standard normal random variable. Denote by
P−→

convergence in probability. According to the basic results of martingale central limit theory (see the
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