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A B S T R A C T

Ecologists routinely use dissimilarity measures between pairs of plots to explore the complex mechanisms that
drive community assembly. Traditional dissimilarity measures usually quantify plot-to-plot dissimilarity based
either on species presences and absences within plots or on species abundances, thus assuming that all species
are equally and maximally distinct from one another. However, the value of dissimilarity measures that in-
corporate information on functional differences among species is becoming increasingly recognized. Since these
‘functional dissimilarity measures’ have been developed for capturing new aspects of plot-to-plot dissimilarity,
they have usually little to do with more traditional measures based solely on species incidence or abundance
data. In this paper we introduce a general method for adapting a large family of traditional dissimilarity coef-
ficients to the measurement of functional differences among plots. The behavior of the proposed method, for
which we provide a simple R function, was evaluated with published data on plant communities in a coastal
marsh plain in Algeria. As shown by the worked example, our proposal produces a coherent framework for
summarizing functional dissimilarity among plots. Being based on a generalization of classical dissimilarity
measures with well-known properties, this new family of functional dissimilarity indices also has a great po-
tential for future theoretical and applied developments in this field of research.

1. Introduction

Ecologists have developed a multitude of (dis)similarity measures
between pairs of plots (or communities, assemblages, relevés, sites,
quadrats, etc.) for exploring various aspects of the complex mechanisms
that drive community assembly (see e.g. Orlóci, 1978; Podani, 2000;
Legendre and Legendre, 2012). These measures usually quantify plot-
to-plot dissimilarity based either on species incidence or abundance
within plots, thus assuming that all species are equally and maximally
distinct from one another, while neglecting information on functional
differences among species.

More recently, a number of ‘functional dissimilarity measures’ have
been proposed for summarizing different facets of functional differ-
ences among plots (Rao, 1982; Clarke and Warwick, 1998; Izsák and
Price, 2001; Champely and Chessel, 2002; Pavoine et al., 2004; Chiu
et al., 2014; Pavoine and Ricotta, 2014; Ricotta et al., 2016). Such new
dissimilarity measures incorporate information on the species func-
tional traits. Therefore, they are expected to correlate more strongly

with ecosystem-level processes, as species influence these processes via
their traits (Mason and de Bello, 2013). Since functional dissimilarity
measures have been developed for capturing new aspects of ecological
differences among plots, they are usually not directly related to more
traditional measures of species turnover which are based solely on
species incidence or abundance data.

The aim of this paper is thus to introduce a methodological frame-
work for adapting a large family of traditional dissimilarity coefficients
to the measurement of functional differences among plots. The main
advantage of this approach is that, being based on a generalization of
well-known dissimilarity measures which have been extensively used in
ecology for a long time, these new functional measures benefit from
decades of research on multivariate resemblance.
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2. Methods

2.1. A general family of traditional dissimilarity measures

Let U and V be two plots where xUj and xVj are the abundance values
of species j in plots U and V, respectively, and N is the total number of
species sampled in both plots (i.e. the species for which

>x xmin{ , } 0Uj Vj ). A desirable property for a dissimilarity coefficient is
the so-called ‘sum property’ (Ricotta and Podani, 2017). That is, its
ability to be additively partitioned into species-level contributions, thus
enabling to emphasize the relevance of single species to plot-to-plot
dissimilarity.

Among the many dissimilarity measures that conform to the sum
property, the Canberra distance (Lance and Williams, 1967) is obtained
by standardizing separately for each species the absolute difference in
species abundances by the sum of the abundances in both plots:
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The Canberra distance is bounded between 0 and N. Therefore, a
normalized measure in the range [0,1] is obtained by division by N:
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On the other hand, the dissimilarity coefficient proposed by Bray
and Curtis (1957), one of the most popular measures of compositional
dissimilarity among ecologists, implies normalization of the sum of
species-wise differences by the total abundance of species in both plots:
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To emphasize the relationship between the Bray-Curtis dissimilarity
and the Canberra distance, we can rewrite BC as:
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As shown by Eq. (4), the Bray-Curtis dissimilarity can be expressed

as a normalized form of the Canberra distance in which the contribution
of species j to overall dissimilarity − +x x x x| |/( )Uj Vj Uj Vj is weighted by
the relative abundance of j in plots U and V. Based on the observed
relationship between the Bray-Curtis dissimilarity and the normalized
Canberra distance, Ricotta and Podani (2017) defined a ‘generalized
Canberra dissimilarity’ which includes BC and NC as special cases:
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with ≤ ≤π0 1j and ∑ =
=

π 1j
N

j1 . The weights πj may be related to any
species-specific ecological variable that is assumed to influence eco-
system functioning, such as the species phylogenetic and/or functional
originality, or their conservation value. For =π N1/j , we obtain the
normalized Canberra distance, while setting =π wj j, we obtain the
Bray-Curtis dissimilarity.

Going a step further, we can define an even larger family of dis-
similarity coefficients as:
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where the term d x x( , )Uj Vj represents the single-species dissimilarity of
U and V for species j in the range [0, 1].

Members of this family are the generalized version of the
Marczewski-Steinhaus coefficient (Ricotta and Podani, 2017):
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or the evenness-based dissimilarity coefficients proposed by Ricotta
(2018):
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where EVEj is a measure of the evenness of species j in plots U and V.
For example, EVEj can be obtained with Pielou’s evenness:

=EVE H /log 2j j (10)

where Hj is the Shannon entropy of species j:
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In the next sections, we will show how to apply this family of dis-
similarity coefficients to the measurement of functional dissimilarity
among plots.

2.2. A new family of functional dissimilarity measures

Regardless of how pairwise functional differences among species i
and j are calculated, they are usually represented by symmetric dis-
similarity coefficients δij with =δ δij ji and =δ 0ii . If δij is bounded in the
range [0, 1], we can derive a corresponding similarity coefficient

= −σ δ1ij ij as the complement of δij. Note that dissimilarity measures
with an upper bound >δ 1max can be normalized by dividing each term
by δmax, while for dissimilarity measures without an upper bound we
can still get a locally normalized dissimilarity in the range [0, 1] by
dividing each term by the maximum value in the data set.

Combining species abundances xUj and between-species similarities
σij, Leinster and Cobbold (2012) defined the ‘ordinariness’ of species j as
the abundance of all species in plot U that are functionally similar to j
such that:

∑=
=

z x σUj
i

N

Ui ij
1 (11)

where zUj is the abundance of all species that are functionally similar to
j (including j itself). For species j, zUj thus measures the commonness of
all individuals in plot U that support the functions associated with j. zUj
ranges from xUj if all species ≠i j are maximally dissimilar from j, such
that =σ 0ij , to ∑ =

xj
N

Uj1 (i.e. the total species abundance in plot U) if all
species ≠i j are functionally identical to j such that =σ 1ij . Hence, the
abundance of species similar to j is at least as great as the abundance of j
itself.

Given two functionally identical plots U and V, we have that for
each species in U and V, the ordinariness = ∑ =

z x σUj i
N

Ui ij1 in plot U is
equal to the corresponding value = ∑ =

z x σVj i
N

Vi ij1 in plot V. In other
words, for two functionally identical plots, the abundance of the species
similar to j in plot U is equal to the abundance of the species similar to j
in plot V (for definitions and proofs see Appendix 1). In contrast, for
two maximally distinct assemblages, either zUj or zVj is equal to zero,
meaning that the species in plot U do not have any functional analogue
in plot V.

Hence, in principle, we could calculate a measure of functional
dissimilarity among plots with any of the many traditional dissimilarity
measures developed for species abundance data by simply replacing the
species abundances xUj and xVj in both plots with their corresponding
species ordinariness zUj and zVj. The resulting measures meet the fore-
most requirements for a dissimilarity coefficient in the range [0, 1]: for
two maximally dissimilar plots (i.e. two plots with no species in
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