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ARTICLE INFO ABSTRACT

Keywords: Desertification is a global threat to human beings, and effective desertification control requires an inter-
Land desertification disciplinary approach to identify the pattern and evolution of sensitive areas. Based on the ESA (Environmental
Sensitivity Sensitive Areas) principles and real desertification conditions in North China, the Land Desertification Sensitivity
Ezgﬁ;‘;‘on Index (LDSI) was constructed to identify the pattern of areas sensitive to desertification in 1981-2010 as well as

their evolution under different climate change scenarios from 2011 to 2030. The results show that regions with
low and medium sensitivity to desertification were dominant in North China, which together accounted for
61.93% of the study region. From 1981 to 2010, the average LDSI of North China experienced a decreasing
trend, and sensitive areas were mainly distributed in the east of Horqin grassland, Chaidamu basin, the east of
Tarim basin, and Zhungeer basin. For the period of 2011-2030, the average LDSI of the whole research region
also deceased under both RCP4.5 and RCP8.5 scenarios. However, some regions, e.g., Turpan Hami basin and
Zhungeer basin, become more sensitive to desertification. Attention should be paid to desertification control and

North China

ecology protection measures in these regions.

1. Introduction

Desertification is a phenomenon of land degradation caused by
climate change and human activities in arid and semi-arid regions,
which seriously affects and disturbs the survival and sustainable de-
velopment of human society (UNCCD, 1994). Approximately 6-12
million km? of land is suffering desertification, and approximately
1-6% of inhabitants of drylands live in desertified area (World Bank,
2009). In 1990s, the United Nations Convention to Combat Desertifi-
cation Conference on Desertification focused global attention on com-
bating desertification (UNCCD, 1994). In the 21st century, the Millen-
nium Ecosystem Assessment was launched in 2001 and the 2030
Agenda for Sustainable Development was established by the UN in
2015, and both of these efforts emphasized the importance of linking
the ecosystem services provided by deserts and desertified land to
human well-being (Millennium Ecosystem Assessment, 2005; UNCCD,
2012; Reed et al., 2015).

Identifying the areas sensitive to land desertification and assessing
their spatio-temporal pattern and evolution trend provide an important
basis for planning desertification control and ecology protection mea-
sures (Sterk et al., 2016). The desertification sensitive areas refer to the
locations that exhibit a possibility of desertification due to the presence
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of various factors. These factors are often associated with terrain con-
ditions, soil and vegetation characteristics, climate, and human drivers
(Symeonakis et al., 2016; Karamesouti et al., 2018). The Environmental
Sensitivity Area (ESA) method that was originally derived from the
Mediterranean Desertification and Land Use Project (MEDALUS)
funded by the European Union has been used to assess land degradation
or desertification sensitivity by constructing an Environmental Sensi-
tivity Area Index (ESAI) from soil, climate, vegetation, and land man-
agement (Kosmas et al., 1999; Salvati and Bajocco, 2011; Salvati and
Ferrara, 2015). Due to the benefits of ESA principles, such as simplicity,
flexibility, and rapid implementation (Contador et al., 2009; Pravalie
et al., 2017), this method has been applied worldwide to evaluate land
degradation and desertification risks (Benabderrahmane and
Chenchouni, 2010; Tavares et al., 2015; Symeonakis et al., 2016;
Karamesouti et al., 2018). In turn, these applications also provided data
that can be used to improve this model (Ladisa et al., 2012). For ex-
ample, 1zzo et al (2013) modified the index in the MEDALUS model and
applied it in the Dominican Republic. Jafari and Bakhshandehmehr
(2016) fused the index and fuzzy logic to quantify the environmental
sensitivity to desertification in central Iran. In order to overcome the
limitations of the MEDALUS protocol, Duro et al. (2014) proposed the
ESPI index and applied it to sensitive areas in the Sicily region, over
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eight decades of investigation (1921-2000). Salvati and Ferrara (2015)
introduced the FIRISK index as a reliable indicator to assess fire risk
within the ESAI framework. Privalie et al. (2017) assessed the land
degradation sensitive areas in southwestern Romania by adjusting the
sub-indicators of MEDALUS method based on the local conditions.

China is one of the many countries that have seriously suffered from
land desertification. According to the Fifth National Desertification
Survey statistics, the area of desertified land in China reached
1,721,200 km? in 2014 (State Forestry Administration of China, 2015).
The central and local governments have made efforts to combat de-
sertification through various efforts, including the Grain for Green
Project, the Beijing and Tianjin Sandstorm Source Treatment Project,
the Natural Forest Protection Project, and the “no grazing” statute
(Zhang et al., 2012; Xu et al., 2014; Tan and Li, 2015; Xie et al., 2015).
However, rapid urbanization, intensive mining and unreasonably af-
forestation are adding to pressure on desertified land (Cao, 2008; Ge
et al., 2016). These trends in conjunction with climate change have led
to great desertification risk in North China (Wang et al., 2017). Al-
though previous studies have been conducted to investigate the areas
sensitive to land degradation in China via the ESA method (Wang et al.,
2014; Sun and Wang, 2015), the method could not be directly used for
identifying the areas sensitive to desertification. This is because the ESA
indicators and their reference values were derived from MEDALUS and
were designed for studying land degradation in the Mediterranean re-
gion. Therefore, the ESA method cannot fully reflect the real desertifi-
cation conditions in North China. Meanwhile, previous studies have
largely ignored the prediction of sensitive area change in the future.
The prediction of these areas is crucial to support desertification control
planning and policy implementation. Therefore, the aims of this paper
are to (1) investigate the spatio-temporal pattern of areas sensitive to
land desertification in North China from 1981 to 2010 by modifying the
ESA method; and (2) to predict the evolution trend of areas sensitive to
desertification in North China from 2011 to 2030. The results of this
study will hopefully provide a scientific basis to identify key regions for
desertification control in China.

2. Materials and methods
2.1. Study area

The desertified areas in China are mainly distributed in the northern
regions across the semi-humid, semi-arid, and arid zone, which span 9
provinces (Inner Mongolia, Xinjiang, Qinghai, Ningxia, Gansu, Hebei,
Shanxi, Shaanxi, and Sichuan) as well as 222 counties (Wang et al.,
2004). The climate characteristics of this region exhibit significant
spatial heterogeneity. The average annual precipitation is only
0-450 mm, and it is unevenly distributed in different seasons and re-
gions. Generally, approximately 70-80% of rainfall is concentrated
from June to September. The average temperature is approximately
5.7 °C, the average annual sunshine duration is 2807 h, and the average
wind speed reaches 2.3 m/s. Most of soils in this area are chestnut soil,
brown soil, brown desert soil, mattic soil, and sandy soil. The land cover
in the study area also exhibit a high level of spatial heterogeneity, in-
cluding oasis irrigation agriculture, rainfed agriculture, semi-humid
and semi-arid steppe grassland, desert grassland, and alpine meadow
steppe. The environment and ecological background of the study region
is fragile; and the rapid increases in the population, urbanization, and
intensive mining activities have created pressure on the land and in-
creased sensitivity to land desertification (Xu and Ding, 2018).

To facilitate statistical and comparative analyses, the study area was
divided into 20 sub-regions according to the climate characteristics and
natural geography (Wang et al., 2004) (Fig. 1). The sub-regions include
the following: Hulun Buir grassland (hlbr), Horgin grassland (horq),
Hunshandake sandy land (hsdk), Chahar grassland (char), Bashang area
(bash), Wumeng Qianshan and Tumote plain (wmt), the northwest area
of Shanxi Province (jxb), Erdos grassland (erdos), Ningxia Hedong
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sandy land (nxhd), Three-River Headwaters region (trhr), Chaidamu
basin (cdm), Alashan plateau (alsh), Hetao plain (htpy), Hexi Corridor
(hxzl), the Houshan region in Inner Mongolia (nmhs), Tarim basin
(talm), Turpan Hami basin (thpd), Yinchuan plain (ycpy), Yili basin
(ylpd), and Zhungeer basin (zhgr).

2.2. Data sources and preprocessing

The data used in this study include climate, soil, vegetation, topo-
graphy, Normalized Difference Vegetation Index (NDVI), and socio-
economic statistics. The monthly average meteorological data from
1981 to 2010, including temperature, precipitation, sunshine duration,
and average wind speed, recorded by meteorological stations in the
research region were obtained from the National Meteorological
Information Center. The monthly average temperature and precipita-
tion data under the Representative Concentration Pathways 4.5
(RCP4.5) and RCP8.5 scenarios from 2011 to 2030 were acquired from
the Climate Change Prediction Dataset of China V3.0 provided by the
National Climate Center, which was simulated by using RegCM4.0 that
one-way nesting the BCC_CSM1.1 and the resolution of this dataset was
0.5° x 0.5°. A 1:1,000,000 soil map, a vegetation map, a Digital
Elevation Model (DEM), and a land use map with 1km x 1km re-
solution were obtained from the Resource Environmental Data Center,
Chinese Academy of Sciences. The 8-km resolution and 15-day max-
imum value composite NDVI data from 1981 to 2010 were obtained
from the GIMMS (Global Inventor Modeling and Mapping Studies)
NDVI 3 g dataset, which had been pre-processed by geometric correc-
tion and graphics enhancement. The GIMMS is widely used in long-term
vegetation and land dynamics monitoring (Tian et al., 2015; Georganos
et al., 2017). The social-economic statistics at the county scale, such as
population and livestock number, were collected from the Statistic
Yearbooks of the related provinces in North China. To facilitate spatial
analysis and comparison, all the raster data and vector data used in this
study were resampled or converted into raster data with an 8-km re-
solution, and the coordinate system was set to Clarke_1866_Albers.

2.3. Methods

2.3.1. Identification of areas sensitive to land desertification

Based on the principles and major indicators of ESA and the actual
characters of land desertification in North China, a Land Desertification
Sensitivity Index (LDSI) was constructed from four aspects: the Climate
Quality Index (CQI), the Soil Quality Index (SQI), the Vegetation
Quality Index (VQI), and the Land Management Quality Index (LMQI).
The indicators of LDSI are listed in Table 1.

2.3.1.1. Climate quality index. The Climate Quality Index reflects the
impact of climate variation on land desertification, and it was modeled
via rainfall, slope aspect, an aridity/humidity index, and a wind erosion
index (Table 2). Rainfall is the most important factor for vegetation
growth and desertification evolution in arid and semi-arid regions
(Hickler et al., 2005; Georganos et al., 2017). Slope aspect determines
the distribution of solar irradiation and land surface temperatures,
which have significant effects on vegetation growth. The aridity/
humidity index and the wind erosion index reflect the impacts of the
water-heat balance and wind erosion on land desertification,
respectively, and smaller values of the aridity/humidity index and the
wind erosion index indicate a lower sensitivity to desertification (Wu
et al., 2005; Li et al., 2018).
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