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a b s t r a c t

This paper presents a deep learning based structural steel damage condition assessment method that
uses images for post-hazard inspection of ultra-low cycle fatigue induced damage in structural steel fuse
members. The deep learning model – Convolutional Neural Network (CNN) model, can be trained to rep-
resent the high dimensional features in huge amount of raw data which traditional mathematical models
are unable to describe. A saliency-based visualization method is employed to visualize the feature-related
pattern recognized by the deep learning model. To quantify the damage condition of the inspected struc-
ture fuse members, a micromechanical fracture index is defined as the damage index and used for label-
ing the images in the training data set. To provide large training dataset, cumulative plastic strain contour
plot images generated through finite element (FE) simulation are adopted for the training data.
Parametric studies were performed to validate and optimize the deep learning based damage condition
assessment method. The method and findings are further examined using real experimental images col-
lected from cyclic testing of a steel notched plate specimen. The results suggest that the proposed method
provides a promising automation tool for rapid inspection of structural steel fuse member damage
condition.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

New design trends for seismic resistant structures is to incorpo-
rate fuse members (sacrificial elements to dissipate energy) into
structures so that damage can be confined to limited number of
structural fuse members while other structural members would
remain undamaged during design level earthquakes. Examples of
structural fuses are buckling restrained braces, steel shear links
and slit steel plate wall with buckling restrain cover plate (see,
e.g., [29,30]. For example, Qu et al. [17] developed buckling-
restrained brace (BRB) with replaceable steel angle fuses which
offers ease of post-earthquake examination of fuse damage, conve-
nient and prompt replacement of damaged fuses, and reuse of the
buckling restraining elements. Such structure design concept is
also appealing to structural health monitoring (SHM) since condi-
tion assessment or monitoring work can now be concentrated to a
limited number of fuse members. For such smart fuse members
instrumented with sensors, rapid inspection of fuse members for
damages likely inflicted by strong earthquakes could be carried
out in an efficient way, which would accelerate damage condition
assessment and thus enhance structural resilience through quick

and less subjective inspection practice. Currently, visual inspection
is typical practice for post-hazard condition assessment of struc-
tural fuses (e.g., [32]). Intensive labor, high cost and variable
results are typical of such manual operation. Furthermore, in build-
ings, structural members are often hidden behind fireproof coating
and drywalls, and thus damage of these hidden steel fuse members
are difficult to detect, often requiring removal of coverings and
thus time consuming and costly. For efficient operation with
instrument-assisted inspection, researchers have been looking into
automated structural health monitoring technology such as com-
puter vision based or acoustic emission based method [31].

To assess the damage condition of structural fuse members,
image-based structural condition assessment shows a strong
potential in addressing the rapid inspection need in practical appli-
cations: convenient data collection by snapping photos (e.g. using
smart phones, wearable imaging devices or drones) and availabil-
ity of well-designed algorithms for accurate image pattern recogni-
tion. Several research works have been reported in using images to
assist with structural condition assessment [9,24,14,3,4]. For
examples, [9] identified the maximum drift angle during an
earthquake event by using strain patterns in steel slit plate walls
to train an artificial neural network. Despite the promising poten-
tial of using image-based method for condition assessment, a
robust algorithm to identify structural damage from collected data
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are difficult to define because the detection results are usually sen-
sitive to such pre-defined damage features. To address this need of
high-level features that might not be accurately described with
current mathematical models, deep learning methods have been
adopted which can learn such features from training data.

Popularized by Hinton and others in the last decade, deep learn-
ing methods have been reported recently to have achieved impres-
sive success in image and speech recognition [11]. It is reported
that deep learning-powered image recognition is now performing
better than human vision on many tasks. AlphaGo is an example
of the tremendous achievements by deep learning in recent years.
Convolutional Neural Network (CNN) is one of the deep learning
models which lays the foundation of the state-of-art performance
for image classification and object detections in several data
benchmarks [11,19,18]. Kumar et al. [12] developed prototype sys-
tem that uses deep convoluted neural networks (CNNs) to classify
multiple defects in sewer CCTV images including root intrusions,
deposits, and cracks. The viability of this approach in the auto-
mated interpretation of sewer CCTV videos is demonstrated by
average testing accuracy of 86.2% using trained CNN model based
on 12,000 images collected from over 200 pipelines.

This study investigates applying deep learning method to
image-based rapid inspection of structural steel fuse damage con-
dition. Firstly, a procedure for incorporating a customary deep
learning model into structural condition assessment is presented,
in which a micromechanical fracture index is defined to label the
damage condition of the structural steel fuse member. The pro-
posed method is demonstrated in a case study of a replaceable
shear link beam, which is designed as a structural fuse member
for eccentrically braced frames. A CNN model was adopted for
the image-based structural damage condition recognition in this
case study. This case study validates and optimizes the method
by using FE simulation-generated images as training data. The
method is further verified by a second case study involving photo
images taken during experimental testing of a dogbone steel plate
specimen. The results from both case studies suggest that the pro-
posed method can effectively identify damages in structural steel
fuse members.

2. Deep learning model description

Deep convolutional neural network (CNN) is adopted here for
image-based structural condition assessment because of its
advancement and demonstrated success in computer vision field.
However, a few issues discussed next distinguish the present study
from the research works on image classification in the computer

vision field. The first one is that the label of the structural condition
images is assigned to reflect the quantitative damage condition of
the structural elements; therefore, a damage index has to be estab-
lished first to characterize the damage. Another issue is that gener-
ating the millions of training image data as observed in the ILSVRC
or ImageNet is not practical in near future simply because of the
limited availability of field reconnaissance data and experiment
test data. Due to the limited amount of available training data,
the training strategy needs to be adjusted to avoid the overfitting
problem. Finally, no benchmark testing data is available for evalu-
ating the performance of trained model. Thus, the testing data
needs to be properly designed to fit the objective of damage condi-
tion assessment (e.g. considering the relation of damage condition
to the loading history and different loading protocols).

Details of deep learning or the CNN methods can be found in
references (e.g., the review article by LeCun et al. [13] or the book
by [8]. A brief description that helps readers to gain necessary
background knowledge on the specific algorithm of the deep learn-
ing model used in this study is presented next. Additionally, a sal-
ience map based visualization technique is also used to interpret
results. The adopted CNN model is modified from the VGG-16
model pre-trained by Simonyan and Zisserman [19].

2.1. Architecture

The architecture of CNN is specialized for processing the 2D
grid-like topology of input images and the CNN model usually
includes multiple stacks of alternating convolution and max-
pooling layers to function as feature extractors, followed by a small
number of fully connected layers as classifier [8]. The architecture
of the adopted CNN model is shown in Fig. 1. The input images are
converted into numerical vectors with RGB values at size of 224
(pixels) � 224 (pixels) � 3 (color channels: red, green and blue).
The vectors are then forwarded into multiple convolutional and
pooling layers, outcoming with features followed by fully con-
nected layers. Finally, a SoftMax layer is used to score the activa-
tions into a vector consisting C (possible classes) values with
each ranging from 0 to 1 and all summating to 1. The prediction
is made by choosing the class with the highest score.

2.2. Layers

Convolutional layer, max pooling layer and fully connected
layer are frequently used in the adopted CNN model. The convolu-
tional operation computes features based on a local field of the
preceding layer as described in Eq. (1),
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N in last FC layer refers to the amount of possible damage cases
Conv: convolutional layer
FC: fully connected layer
Number following Conv and FC are kernel sizes
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Fig. 1. Architecture of VGG-16 model.
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