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a b s t r a c t

In the paper a nonlinear inverse Cauchy problem of nonlinear elliptic type partial differ-
ential equation in an arbitrary doubly-connected plane domain is solved using a novel
meshless numerical method. The unknown Dirichlet data on an inner boundary are re-
covered by over-specifying the Cauchy data on an outer boundary. A homogenization
function is derived to annihilate the Cauchy data on the outer boundary, and then a
homogenization technique generates a transformed equation in terms of a transformed
variable, whose outer Cauchy boundary conditions are homogeneous.When the numerical
solution is expanded by a sequence of boundary functions, which automatically satisfy
the homogeneous Cauchy boundary conditions on the outer boundary, we can solve the
transformed equation by the domain type meshless collocation method. For the nonlinear
inverse Cauchy problems we require to iteratively solve the linear systems with the right-
hand sides varying per iteration step. The accuracy and robustness of the homogenization
boundary function method (HBFM) are examined through seven numerical examples,
where we compare the exact Dirichlet data on the inner boundary to the ones recovered
by the HBFM under a large noisy disturbance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical solution of the oncoming nonlinear inverse Cauchy problem is to solve the boundary value problem (BVP)
of a nonlinear elliptic type partial differential equation (PDE) in a doubly-connected domain, given the over-specified Cauchy
data on an accessible outer boundary. For the purpose of data completion one needs to recover the unknown data on an
inaccessible inner boundary. However, the nonlinear inverse Cauchy problem is a difficult issue, since the solution may not
depend continuously on the given data, where the error in the input data leads to an incorrect numerical solution.

The inverse Cauchy problem is not an artificial and fictitious problemwithout involving the physicalmeaning. The Cauchy
boundary conditions are often encountered in the applications of non-destructive testing to solid materials. In a practical
application, the electrostatic image used in the non-destructive testing of metallic plates leads to an inverse Cauchy problem
in two-dimension. In order to detect the unknown shape of an inclusionwithin a conductingmetal, the over-specified Cauchy
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data (the voltage and current) are imposed on the accessible outer boundary, which requires to solve an inverse Cauchy
problem from the available boundary data measured on the outer boundary.

Because the inverse Cauchy problems of elliptic type PDEs are highly ill-posed in nature [1], they have been solved by
adopting different numerical methods [2–23]. The most of them only considered the linear inverse Cauchy problems for
the linear PDEs, including the Laplace equation, the Poisson equation, the Helmholtz equation, and the modified Helmholtz
equation, etc. In the literature there are only a few papers to solve the nonlinear inverse Cauchy problems [24–27], which
are much more difficult than that for the linear inverse Cauchy problems. When the nonlinear inverse Cauchy problem is
solved, the nonlinearity may render a highly ill-posed behavior in the numerical method.

Themeshless methods, which do not require extensive meshes and elements generation and are flexible to deal with the
multi-dimensional and irregular domain problems, are used in many papers to carry out the numerical solutions of PDEs.
There are different kinds of meshless methods, like the weak forms element free Galerkin (EFG) method, the meshless local
Petrov–Galerkin (MLPG) method and the MLPG based on particular solutions (MLPG-PS) [28–32], the meshless techniques
based on collocation techniques [33,34], the method of approximate particular solutions [35], and the meshless techniques
based on the combination of weak forms and collocation technique [36]. A recent review of themeshless methods was given
in [37].

In the paper we are going to develop a new meshless method of domain type collocation techniques in terms of
homogeneous boundary functions as the numerical bases [38,39]. Previously, the technique is used to solve the inverse
geometry problem to recover amissing inner shape. The current numerical solution of the nonlinear inverse Cauchy problem
is based on a novel scheme, by directly collocating points inside the doubly-connected domain and solving the transformed
elliptic type equation iteratively to find the numerical solution, which is designed to automatically satisfy the over-specified
Cauchy boundary conditions on the outer boundary.

The remainder of this paper is arranged as follows. In Section 2we prescribe the nonlinear inverse Cauchy problem of the
nonlinear elliptic equation in a doubly-connected plane domain and derive a homogenization function,which annihilates the
over-specified Cauchy data on the outer boundary. Then, a homogenization technique and a new idea of boundary functions
are introduced in Section 3, where we express the transformed variable in terms of the boundary functions as the bases,
which automatically satisfy the homogeneous Cauchy boundary conditions on the outer boundary. In Section 4 we develop
the numerical algorithms of the homogenization/boundary functionmethod (HBFM). Seven numerical examples are given in
Section 5 to assess the performance of the newHBFM in the recovery of different inner boundary data for different nonlinear
elliptic equations. Finally, the conclusions are drawn in Section 6.

2. Variable transformation and homogenization technique

2.1. Nonlinear inverse Cauchy problem

LetΓo, a Lipschitz continuous and simple closed curve in the planeR2, be the boundary of a bounded domainΩo ⊂ R2.We
suppose that the zero point (0, 0) ∈ Ωo and Ωo is a star-like domain, which means that for each azimuth angle θ ∈ [0, 2π ]

as shown in Fig. 1 the ray emitting from the zero point (0, 0) interacts with Γo at only one point. Similarly, Γi is a Lipschitz
continuous and simple closed curve and is the boundary of a bounded domain (0, 0) ∈ Ωi ⊂ R2, which is also a star-like
domain. Then we can form a doubly-connected domain Ω := Ωo/Ωi as shown in Fig. 1. Ω in the plane R2 being a doubly-
connected domain means that any closed curve in Ω enclosed Ωi cannot be continuously shrunk into a single point without
leaving Ω .

We consider the following nonlinear inverse Cauchy problem to determine the unknown inner boundary data of the
nonlinear elliptic type PDE:

∆u(x, y) + λu(x, y) = H(x, y) + Q (u), (x, y) ∈ Ω ⊂ R2, (1)

u = h(x, y), (x, y) ∈ Γo, (2)

un = g(x, y), (x, y) ∈ Γo, (3)

where H(x, y), h(x, y) and g(x, y) are given bounded functions and Q (u) is a nonlinear function of u satisfying the Lipschitz
condition. The parameter λ in Eq. (1) may be positive, zero or negative. un = ∇u · n is a normal derivative of u on Γo with
n a unit normal direction. Ω is a star-like doubly-connected domain with boundary Γ = Γo ∪ Γi, where Γo ∩ Γi = ∅.
While Γo denotes an outer boundary, Γi is an inner boundary. We are looking for the inner boundary condition f (x, y) =

u(x, y), (x, y) ∈ Γi, so that, the following forward problem is satisfied

∆u(x, y) + λu(x, y) = H(x, y) + Q (u), (x, y) ∈ Ω ⊂ R2, (4)

u = h(x, y), (x, y) ∈ Γo, (5)

u = f (x, y), (x, y) ∈ Γi, (6)

and respecting additional conditions un = g(x, y), (x, y) ∈ Γo.
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