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a b s t r a c t

Two forms of dynamic transfer matrix are derived for a one-dimensional (beam-like) re-
petitive pin-jointed structure with point masses located at nodal cross-sections, the
displacement-force transfer matrix G, and the displacement-displacement transfer matrix,
H. Similarity matrices are introduced to relate G and H, together with their respective
metrics. Symplectic orthogonality relationships for the eigenvectors of both G and H are
derived, together with relationships between their respective sets of eigenvectors. New
expressions for the group velocity are derived. For repetitive structures of finite length,
natural frequency equations are derived employing both G and H, including phase-closure
and the direct application of boundary (end) conditions. Besides an exposition of the
theory, some familiar but much new, the focus of the present paper is on the relationships
between the two forms of transfer matrix, including their respective (dis)advantages.
Numerical results, together with further theory necessary for interpretation, are presented
in companion papers.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Repetitive or periodic structures consist of a cell which spatially repeats in one-, two- or three-dimensions. Each cell is
connected to another in a regular pattern to form the complete structure. Such constructions are widely employed in en-
gineering, and include rail track, turbine blade assemblies (bladed discs), building frameworks, cranes, aircraft fuselages,
trusses and honeycomb panels. Since the manufacture and construction of such structures can also be a repetitive process,
they represent a cost effective design solution for many engineering applications. Early contributions are described in Refs.
[1e7]. The joints between the structural members can be designed so that they allow additional degrees of freedom,
providing the possibility of a change in structural shape [8], or to become a deployablemechanism/structure [9]. Furthermore,
repetitive structures portray symmetrical features and often have an aesthetically pleasing appearance.

The present work is concerned with one-dimensional (beam-like) repetitive structures. When periodicity is taken into
account, the static and dynamic analysis of an entire structure can be reduced to the analysis of a single repeating cell,
together with boundary (end) conditions if the structure is not of infinite extent; equivalent continuum properties can be
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determined for segmented structures such as trusses [10]. The primary approach is through the use of a transfer matrix T,
which relates state vector components on the right-hand side to those on the left-hand side of the cell, i.e. sR ¼ TsL.
(Alternative analytical approaches, including the receptance method, are described in Mead's 1996 review paper [7].) An
eigenvector of the transfer matrix describes a pattern of state vector components which is unique towithin a scalar multiplier,
l. Translational symmetry demands that this pattern is preserved as one moves from the left-hand to the right-hand side of
the cell, allowing one to write sR ¼ lsL; this immediately leads to the standard eigenvalue problem TsL ¼ lsL, or ðT� lIÞsL ¼
0. There are two forms of the transfer matrix T in frequent use: the first and more common [3,10e18,23e25] relates a state
vector s of displacement and force components on either side of the cell, here presented as transfer matrix G; the second and
less common form [8,19e22] relates state vectors s of displacements at three consecutive nodal cross-sections of the com-
plete structure, here presented as H.

Both G andH can be determined from the stiffness matrix K; the latter is symmetric for linear elastic displacements and, in

turn, both transfer matrices are symplectic, that is they satisfy a relationship of the form TTU T ¼ U, where TTdenotes the
transpose of T, and U is a skew-symmetric matrix, known as the metric. For transfer matrix G, the metric takes its simplest,

canonical, form, and is written as J ¼
�
0 I
�I 0

�
. The significance of the metric is rooted in Hamiltonian mechanics. The metric

in a Euclidean vector space is the length of a vector, calculated as the square root of the dot product of the vector with itself, an
inner product. However, in a symplectic vector space, where the state vector consists of both displacement and force com-
ponents, such an inner product has no physical meaning. Instead, a symplectic inner product, employing J as the metric,
multiplies displacement with force which is work or energy; rather than length, it is an area, which is preserved during (here
spatial) evolution. Ultimately, it implies conservation of energy.

For the static problem, the force-displacement transfermatrixG is perhaps themore appropriate, as one can readily identify
force resultants; thus the decay modes associated with self-equilibrated loading (as anticipated by Saint-Venant's principle),
the rigid body modes associated with zero force components, and the transmission modes associated with the force re-
sultants of tension, bending moment and shearing force can be easily recognised. This static problem is characterised by
multiple unity eigenvalues for the rigid body and transmission modes. In turn the transfer matrix cannot be diagonalised, but
can only be reduced to a Jordan canonical block form; e.g. the principal vector describing tension is coupled with the
eigenvector for a rigid-body displacement in the axial x-direction within a ð2� 2Þ block [10].

For wave propagation, the displacement-displacement transfer matrix H is perhaps the more appropriate, as waves are
naturally described in terms of their displacement characteristics, e.g. extensional, flexural, thickness-shear, rather than force
resultants.

Nomenclature

A cross-sectional area
cg group velocity
d, D, D displacement vectors, components
E Young's modulus of elasticity
f, F, F force vectors, components
G displacement-force transfer matrix
H displacement-displacement transfer matrix
i, i, I

ffiffiffiffiffiffiffi
�1

p
, index, identity matrix

j, J index, metric matrix
k, K bar stiffness, stiffness matrix
L, L, L left, bar length, similarity matrix
m, m mass, mass matrix
n, N, N index, number of cells, similarity matrix
R, R right, reflection matrix
s generic state vector
t, T time, generic transfer matrix
V (right) eigenvector of G, matrix of eigenvectors

w, WT wave amplitude vector, left eigenvector of G
X (right) eigenvector of H, matrix of eigenvectors

YT left eigenvector of H
d decay rate constant
4 phase change constant, or wavenumber
l, L eigenvalue, matrix of eigenvalues
u, U radian frequency, skew-symmetric matrix
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