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A B S T R A C T

Building upon recent literature, we combine a novel spatiotemporal variable with spatial methods to investigate
and quantify the influence of the built environment and jurisdictional boundaries on spatial peer-effects (SPEs)
in inner-city areas. We focus on the Hartford Capital region, using detailed data at block-group and PV system
levels for the years 2005-2013. This region is part of a state, Connecticut, actively engaged in supporting PV
system at residential level. Adoption of PV systems varies substantially, and state policies are mediated by town-
level regulations. We initially employ typology analysis to investigate the heterogeneity of the block groups with
higher adoption rates. We then use panel FE and spatial estimations to determine the existence of spill-overs of
SPEs beyond town boundaries. Our estimations suggest that new PV systems have a more limited spatiotemporal
influence in inner-cities. We identify spatial spill-overs from neighboring block groups even between towns,
suggesting that SPEs transcend municipal barriers. We do not find significant results for built-environment,
although we identify several data limitations. Our results suggest that centralized, non-voluntary support po-
licies may have larger effects if implemented beyond town-level, and that SPEs change their determination
power depending on the underlying built environment.

1. Introduction & objectives

Like many other experiential goods with high upfront capital costs
[1], the diffusion of residential solar photovoltaic (PV) systems can be
decisively driven by information flows between peers [2–6] and
through social networks [7], particularly in young markets [8]. As the
price of PV systems continues to fall, information-based drivers, and the
role of non-monetary barriers may become more important in en-
couraging households to transition towards this low-carbon option
[9,10]. Recent literature has attempted to identify non-monetary dri-
vers influencing the diffusion of PV systems, often finding that spatial
peer effects have a positive influence (see e.g. [5,3,11,12]. Similar re-
sults have been found even when treated as spill-overs between regions,
that is, when neighboring regions do influence each other throughout
the adoption process [13–15]. As Mills et al. [16] correctly pointed out,
researchers and policymakers need to improve their understanding of
non-monetary adoption factors in order to better incorporate solar
systems in to utility planning, thus focusing on potential policy short-
falls in supporting the adoption of PV for late-comers.
As an extension of prior research, this work has four main

objectives: i) to typify the profile of average adopters across different
urban areas using secondary data ; ii) to investigate the existence and
influence of spatial peer effects (SPEs) within an urban area char-
acterized by strict jurisdictional (town) boundaries determining dif-
ferences in local policies; iii) to understand the role of spatial barriers in
influencing diffusion; and iv) to improve the models available for in-
vestigating the existence of SPEs, by combining a previously spatio-
temporal peer-effect variable as developed by Graziano and Gillingham
[3], with spatial models as previously used in the context of peer-effects
by Dharshing [15], and following the methodological considerations of
LeSage [17]. The introduction of spatial techniques based on Dharshing
[15], mixed with a previously tested SPEs variable, provides a new,
more robust insight in to the dynamics of SPEs across a diverse urban
spatial setting, thus highlighting the role of space-time in the diffusion
of innovation. To achieve our objectives, we focus on block-group level
data from four towns within the Greater Hartford area in Connecticut, a
state that has implemented several monetary and informational policies
to support PV system adoption at the residential level.
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1.1. Relevant works

Our analysis builds upon the works of Bollinger and Gillingham [6],
Graziano and Gillingham [3], Bronin [18], and, partly, Dharshing [15].
In their analysis of the diffusion of PV systems in California [6], iden-
tified and quantified the presence of SPEs using zip-code level data, as
well as an alternative mean to the installed-base level, which was
previously used in literature. Focusing on Connecticut, and conducting
their analysis as block group level [3], built upon Bollinger and Gil-
lingham’s intuition about SPEs, focusing on the spatial and temporal
degree of influence of these effects, developing a spatiotemporal band
of proximity built off of different Euclidean distances of proximity (0.5,
1 and 4 miles), and testing it for different time lengths since the
neighboring installations occurred (30 days to 24 months). The authors
not only confirmed the presence of SPEs, but found that their effects
decayed as time passed and distance increased, virtually fading beyond
4 miles. Further, the authors linked these results to suggest that the
spatiotemporal influence of these effects may vary depending on the
underlying social and built environment (e.g. use of personal vehicles),
differently [11,21], which instead interpreted their similar results as
the existence of a cut-off distance beyond which SPEs would rapidly
disappear. Focusing on the relationship between built environment and
the laws regulating the operation of diffused renewable energy tech-
nologies [18], found that the adoption of these technologies could have
been hampered in urban-city areas in Connecticut, thus suggesting that
support policies for adoption need to be paired with operational reg-
ulations for operating these technologies within multiple built land-
scapes. Finally [15], has applied spatial regressive and error models for
investigating the factors influencing the diffusion of PV systems in
Germany, finding that connected, although not necessarily neighboring,
areas influence each other’s adoptions.

2. Study area

Despite being quite wealthy on aggregate, CT has widespread in-
come inequality and poverty [20]. These differences within the state
are intertwined with a highly fragmented jurisdictional landscape. A
state-wide program subsidizes PV system adoption, and, upon request
from towns, community programs such as Solarize CT [3]. In recent
years, the residential PV program has been extended to include multi-
family buildings (> 5 owners, see [21]), although sub metering is not
allowed [18].
Each of the 169 towns retains wide powers in several regulatory

matters, including some affecting directly residential PV systems [3].
For example towns may restrict the adoption of roof-top solar systems
on certain buildings depending on their age, or the zoning (e.g. historic
neighborhood), thus influencing the possibility of adoption, and
creating a varied jurisdictional and socioeconomic landscape.
PV systems in CT have reached grid-parity as of 2014 meaning that

the cost of electricity is at least the same as the price of electricity
purchased from the grid [22], mostly thanks to the high electricity
prices in the state and the generous state incentives. The incentive
programs are managed at state-level, with incentive amounts and types
(e.g. tax-break, cash-back, etc.) set equal for the state as a whole.
Among these incentives, homeowners primarily have access to the
Residential Solar Investment Program (RSIP). RSIP can be used for ei-
ther accessing a PV-lease program, or a feed-in-tariff based on con-
sumption, and funded through the Smart E-Loan program, a zero-in-
terest program available state-wide [23]. Overall, the state is
considered as a solar ‘friendly’ state by market watch groups, featuring
in the top-10 PV states in 2018 [24,25], and featuring among the
highest states for PV system count, capacity installed, and in the lower
half for PV system cost [23].
Our analysis focuses on four towns in the central area of

Connecticut: Hartford, the state capital, East Hartford, Glastonbury, and
Manchester. All these towns are relatively old by standards in the USA,

some having being incorporated as early as the 16th century. The towns
form an interrelated space within the Hartford Metropolitan Statistical
Area, and have strong economic ties. Nevertheless, each town is ad-
ministered independently, and, even though they all enjoy the same
statewide incentives, they regulate the processes through which PV
systems can be licensed. Further, these towns are part of one of the most
income and minority segregated regions in the country [26]. With its
highly fragmented jurisdictional landscape and socio-economic char-
acteristics, the region is able to capture some crucial feature of the
whole country making it a good stepping stone on the road to fully
understand the nature and dynamics of SPEs.
Residents of smaller towns usually live in single-family houses,

whereas those of larger, and older, core-municipalities such as Hartford
live in multi-family buildings. Due to the statewide prohibition of sub-
metering and the lack of split-incentives (between landlord and renter
of among occupants of multi-family buildings) to encourage adoption in
these areas, diffusion of PV systems might be difficult even when access
to the financial resources is not an issue [18]. On aggregate, the state
has seen a surge of PV systems adoption in recent years. As of Sep-
tember 2013, 3843 residents have adopted rooftop PV systems,
equating to an increase of 36.5% from December 2012 [27]. Within this
context, our study area offers a wide range of socioeconomic condi-
tions. Fig. 1 shows the extent and location of our four towns and the
median household income for each town.
The four towns play different roles within the Connecticut’s

economy. Hartford, the capital, hosts several governmental buildings
and it is one of the major international centers for insurance companies.
East Hartford still hosts few large manufacturing plants. Both these
towns have problems related to poverty and crime. Manchester hosts
one of the largest shopping areas in the state. Finally, Glastonbury has
recently developed as a wealthier, suburban community, although it
still has several plots of farmland. Overall, the towns extend for about
300 sq. km of land and are home to 268,000 people, or 7.5% of the state
population. None of these towns was part of the CT Solarize program
during the period analyzed.

2.1. Data sources

We conduct our analysis at the (Census) block group level, selecting
data at this scale when possible. Table 1 provides an overview of the
sources used.
We employ a data subset from [3], selecting the block groups be-

longing to Hartford, East Hartford, Glastonbury and Manchester. These
data are the result of interpolated values from actual observation points
derived from the Census 2000 and 2010 and the American Community
Surveys (ACS) – 5-year averages from 2005 to 2011. The time period
covered is January 2005 through September 2013. In the interpolation
process [3], accounted for the changes in block group boundaries using
the newer boundaries assigned by the U.S. Census after 2008. The in-
terpolation process was necessary to obtain a continuous dataset within
the period of interest.
PV systems location and date of application to the Connecticut

Energy Financial and Investment Authority (CEFIA)1 incentive program
come from the CEFIA Solar Database [27]. The dataset contains several
information about adopters, including addresses and the day-month-
year of installations. The dataset records each residential installation
since 2004. Because of the methodology used (i.e. with lagged values),
we dropped the (few) observations available for the first year. Overall,
the period considered runs from January 2005 and September 2013,
equal to 35 quarters. To understand the role of spatial peer effects, we
build upon the work of [3], introducing the spatiotemporal variable
developed by the two authors. This variable aggregates at block group
level the number of PV installations within 6 and 12 months from each

1 As of 2016, the new name of the agency is Connecticut Green Bank.
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