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A B S T R A C T

Real-time information on the plant water status is an important prerequisite for the precision irrigation man-
agement of crops. The plant transpiration has been shown to provide a good indication of its water status. In this
paper, a novel plant water status monitoring framework based on the transpiration dynamics of greenhouse
grown lettuce plants is presented. Experimental results indicated that lettuce plants experiencing adequate water
supply transpired at a higher rate compared to plants experiencing a shortage in water supply. A data-driven
model for predicting the transpiration dynamics of the plants was developed using a system identification ap-
proach. Results indicated that a second order discrete-time transfer function model with incoming radiation,
vapour pressure deficit, and leaf area index as inputs sufficiently explained the dynamics with an average
coefficient of determination of = ±R 0.93 0.04T

2 . The parameters of the model were updated online and then
applied in predicting the transpiration dynamics of the plants in real-time. The model predicted dynamics closely
matched the measured values when the plants were in a predefined water status state. The reverse was the case
when there was a significant change in the water status state. The information contained in the model residuals
(measured transpiration – model predicted transpiration) was then exploited as a means of inferring the plant
water status. This framework provides a simple and intuitive means of monitoring the plant water status in real-
time while achieving a sensitivity similar to that of stomatal conductance measurements. It can be applied in
regulating the water deficit of greenhouse grown crops, with specific advantages over other available techniques.

1. Introduction

The precise determination of irrigation water requirement and
timing is a precursor to the successful precision irrigation management
of crops (Kochler et al., 2007). This requires a knowledge of the plant
water status in real-time which can then guide in arriving at optimal
irrigation scheduling decisions.

Contact monitoring methods such as measurements of stomatal
conductance, sap-flow, and leaf turgor pressure have been shown to
provide an adequate indication of plant water status. However, these
methods are plant-based, requiring large replication to provide an in-
dication of water status at crop level. They also require technical ex-
pertise for implementation, laborious and difficult to deploy as a real-
time monitoring tool (Jones, 2004). Non-contact measurement of plant
canopy temperature (Tc) which is normalized using a crop water stress
index (CWSI) also provides a good indication of plant water status (Ben-
Gal et al., 2009). Its application as a monitoring tool in commercial crop
production is however limited because of the need to know the baseline
temperatures which are required for its computation under the same
environmental conditions as Tc (Maes and Steppe, 2012). Non-contact

monitoring tools which can provide a real-time indication of the plant
water status at crop level, with non-laborious implementation, and
minimal instrumentation and computation requirements will therefore
be beneficial in implementing precision irrigation management in
commercial crop production (Adeyemi et al., 2017).

The plant transpiration is perhaps the best indication of plant water
status (Jones, 2008; Maes and Steppe, 2012). Plants experiencing un-
restricted water supply (well-watered plants) have been shown to
transpire at a higher rate when compared to plants experiencing a
shortage in water supply (Ben-Gal et al., 2010; Villarreal-Guerrero
et al., 2012). This is due to the regulation of water loss by the plant's
stomates with the stomates of well-watered plants opening up more in
response to atmospheric demand. The stomates of plants experiencing
water shortage open up less in response to atmospheric demand in
order to limit water loss (Blonquist et al., 2009). Therefore, the water
status of a plant can be inferred from measurements of its transpiration
rate.

Traditionally, the knowledge of crop transpiration over time has
been applied in the dynamic control of water supply to greenhouse
crops (Daniel et al., 2013). This is usually in form of an off/off control
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strategy in which irrigation is applied after the accumulation of a set
point cumulative transpiration amount (Davis and Dukes, 2010). These
computer-controlled irrigation systems make use of mechanistic or
empirical models to estimate crop transpiration based on environ-
mental and physiological factors (Barnard and Bauerle, 2015).

Several models have been developed for the estimation of tran-
spiration from greenhouse cultivated ornamental and vegetable crops
(Baptista et al., 2005; Fatnassi et al., 2004; Jolliet and Bailey, 1992;
Montero et al., 2001). Most of these models are based on the thermal
energy balance equation of the plant canopy and are similar to the
Penman-Monteith (PM) equation (Howell and Evett, 2004). These
models are able to account for the effect of actual water supply on
transpiration through the incorporation of a stomatal resistance com-
ponent. The stomatal resistance is expressed as a function of several
factors including solar radiation, leaf vapour pressure deficit, leaf
temperature, CO2 concentration, photosynthetically active radiation,
leaf water potential etc. (Kochler et al., 2007). The development of
these models requires the calibration of several hard-to-measure para-
meters which limit their practical application as an irrigation mon-
itoring tool (Villarreal-Guerrero et al., 2012). Furthermore, these
models are unable to account for the time varying nature of the plant
system, as their parameters are assumed to remain constant once
identified. The response of a plant will vary as a result of growth, biotic
and abiotic factors, and adaptation processes (Boonen et al., 2000).

Data-driven modelling approaches based on measured input-output
data of a process have been shown to provide robust approximations of
various biological processes and often require fewer input parameters
when compared to mechanistic models (Navarro-Hellín et al., 2016).
The later is difficult to implement as a perfect knowledge of the physical
process under consideration is often required (Bennis et al., 2008).
Sánchez et al. (2012) applied a system identification approach in pre-
dicting the transpiration rate of a greenhouse grown tomato crop. Their
approach showed promise in accounting to the time-varying plant re-
sponse through an online update of the model parameters. Speetjens
et al. (2009) also applied an extended Kalman filtering algorithm for
the online estimation of model parameters for predicting the tran-
spiration of a greenhouse grown crop. Both studies reported improved
prediction of plant transpiration rates when compared to values pre-
dicted by mechanistic models. The modelling approach presented in
both studies are data-driven making their practical application as an
irrigation monitoring tool viable. They also do not require the stomatal
behavior to be modelled explicitly as it is accounted for in the online
parameter estimation process.

System identification is a data-driven modelling approach which is
applied in modelling dynamic systems (Chen and Chang, 2008). It has
been successfully applied in simplifying and modelling complex en-
vironmental and biological processes(Taylor et al., 2007; Young, 2006),
predicting time-varying biological responses (Kirchsteiger et al., 2011;
Quanten et al., 2006) and in many other irrigation decision support
applications (Delgoda et al., 2016; Lozoya et al., 2016). It is extensively
applied as part of the fault detection methodologies in the advanced
process control industry (Young, 2006). During fault detection, a
system identification approach is used to build a dynamic model of a
process in a known healthy state. The output predicted by the model
can then be compared to the actual real-time measurements from the
process. The parameters of the model can also be updated as new data is
acquired from the process (Gil et al., 2015). This methodology, which
has proven to be successful in the process control industry, can be
adapted and applied as part of an adaptive decision support system for
irrigation monitoring (Adeyemi et al., 2017).

The objectives of this study are to investigate if the transpiration
rates of greenhouse grown lettuce plants (Lactuca sativa) maintained at
different water deficit levels will differ. This will provide a justification
for the application of this measurement as a plant water status mon-
itoring tool. A system identification approach is thereafter applied in
developing a model of the transpiration dynamics and predicting the

transpiration rate of these plants. Finally, the predicted transpiration
rate is used as a tool for monitoring the water status of the lettuce plants
and real-time detection of deviations from a defined water status state.

2. Background

2.1. Plant transpiration

Plant transpiration can be described by the Penman-Monteith
equation (Monteith, 1973). This equation and other transpiration
models derived from it specify that the transpiration (T (gm min )p

2 1 )
is dependent on the incoming solar radiation (R (W m )sw

2 ) and the
vapour pressure deficit of the ambient air ( (kPa)). This is expressed as

= +T R C Cp sw A B (1)

where the coefficients CA and CBare crop dependent parameters.
Baille et al. (1994) noted that the coefficient CB is a function of the

plant leaf area index (LAI), and it adopts different values during the day
due to oscillations in stomatal resistance.

2.2. System identification

System identification is applied in constructing mathematical
models of dynamic systems based on the incoming time-series of input
(u t( )) and output (y t( )) data. The goal is to infer the relationship be-
tween the sampled input/output data. During system identification, the
model structure is first identified using objective methods of time series
analysis based on a given general class of time-series models (here,
linear discrete time transfer functions). The resulting model must be
able to explain the structure of the observed data. System identification
is used to simultaneously linearize and reduce model complexity, so
exposing its ‘dominant modes’ of dynamic behavior.

In this study, the identification process was conducted based on
prior knowledge of the plant transpiration process as shown in Eq. (1).
The vapour pressure deficit and incoming radiation were selected as
climatic input, and the LAI was selected as crop growth input. The
identification of the model structure is considered the first step of the
identification problem in the present study. An online estimation al-
gorithm is thereafter implemented to update the model parameters
based on the real-time data obtained from the process.

In this way, it is possible to detect the changes in the dynamics of the
system thus accounting for the time-varying nature of the plant system.

The linear discrete-time transfer function is written as

= + + +y t B L
A L

U t B L
A L
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k k e
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where y t( ) is the output (transpiration rate), =U t i K( )( 1, 2, , )i
are a set of K inputs that affect the output (incoming radiation, vapour
pressure deficit), =i K( 1, 2, , )i are the delays associated with
each input.

In Eq. (2),

= + + +A L a L a L( ) 1 n
n

1 (3)

= + + +B L b b L b L( ) m
m

0 1

A L( ) and B L( ) are polynomials of the order n and m respectively.
The backshift operator L is such that =L y yj

t t j. =a i n( 1, 2, , )i and
=b j m( 1, 2, , )j are coefficients of the polynomials A L( ) and B L( ).

They represent the unknown parameters that are to be identified. The
identified model is defined by the triad n m[ , , ]i i , where n is the
number of denominator parameters; indicating the model order, and mi
is the number of numerator parameters associated with each input. i is
defined earlier.

The identification process was conducted using the refined instru-
mental variable algorithm (Taylor et al., 2007) implemented in the
Captain toolbox (Young et al., 2007) on the MATLAB® software.
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