

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Computing the average root number of an elliptic surface

Jake Chinis^{a,b,*}

 ^a Department of Mathematics, McGill University, 805 Sherbrooke St. W., Montréal, QC H3A 0B9, Canada
^b Department of Mathematics, Concordia University, 1455 de Maisonneuve Blvd. W., Montréal, QC H3G 1M8, Canada

ARTICLE INFO

Article history: Received 29 January 2018 Received in revised form 21 July 2018 Accepted 25 July 2018 Available online 22 August 2018 Communicated by L. Smajlovic

MSC: 11G05 11G40

Keywords: Rank Root number Average root number

ABSTRACT

By considering a one-parameter family of elliptic curves defined over \mathbb{Q} , we might ask ourselves if there is any bias in the distribution (or parity) of the root numbers at each specialization. From the work of Helfgott [8], we know (at least conjecturally) that the average root number of an elliptic curve defined over $\mathbb{Q}(T)$ is zero as soon as there is a place of multiplicative reduction over $\mathbb{Q}(T)$ other than – deg. In this paper, we are concerned with elliptic curves defined $\mathbb{Q}(T)$

over $\mathbb{Q}(T)$ with no place of multiplicative reduction over $\mathbb{Q}(T)$, except possibly at – deg. In [1], the authors classify all such one-parameter families of elliptic curves whose coefficients, in the parameter T, have degree less than or equal to 2; they also use the work of Helfgott to compute the average root number of two particular subfamilies. We complement the work in [1] by computing the average root number of one of these "potentially parity-biased" families and show that it is "parity-biased" infinitely-often.

© 2018 Elsevier Inc. All rights reserved.

 $[\]ast$ Correspondence to: Department of Mathematics, McGill University, 805 Sherbrooke St. W., Montréal, QC H3A 0B9, Canada.

E-mail address: iakov.chinis@gmail.com.

 $[\]label{eq:https://doi.org/10.1016/j.jnt.2018.07.012} 0022-314 X \ensuremath{\oslash} \ensuremath{ 02018 } \ensuremath{ \text{Elsevier Inc. All rights reserved.}}$

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q} . For every prime p, let \tilde{E}_p denote the reduction of E modulo p and set $a_p := p + 1 - \#\tilde{E}_p(\mathbb{F}_p)$, where $\#\tilde{E}_p(\mathbb{F}_p)$ denotes the number of \mathbb{F}_p -points on \tilde{E}_p . The L-series associated to E is defined by the Euler product

$$L(s, E) := \prod_{\substack{p \text{ prime} \\ p \mid \Delta}} (1 - a_p p^{-s})^{-1} \prod_{\substack{p \text{ prime} \\ p \nmid \Delta}} (1 - a_p p^{-s} + p^{1-2s})^{-1},$$

where Δ is the discriminant of E. It is well known that the product defining L(s, E) converges and gives rise to an analytic function, provided $\Re(s) > \frac{3}{2}$. The Modularity Theorem [17] tells us that much more is true; namely,

$$\Lambda(s,E) := N_E^{\frac{s}{2}} (2\pi)^{-s} \Gamma(s) L(s,E)$$

has an analytic continuation to the entire complex plane and satisfies the functional equation

$$\Lambda(s, E) = w\Lambda(2 - s, E),$$

for some $w = w_E = \pm 1$, where $N_E = N_{E/\mathbb{Q}}$ is the conductor of E and where $\Gamma(s) := \int_0^\infty t^{s-1} e^{-t} dt$ is the Gamma function. We call w the root number of E.

In this paper, we use the techniques developed by Rizzo [11] and generalized by Helfgott [8] to compute the average root number of an explicit family of elliptic curves defined over \mathbb{Q} . By a family of elliptic curves defined over \mathbb{Q} , we mean an elliptic curve defined over $\mathbb{Q}(T)$; equivalently, it is a one-parameter family of elliptic curves given by a Weierstrass equation of the form

$$\mathcal{F}: y^2 = x^3 + a_2(T)x^2 + a_4(T)x + a_6(T),$$

for some $a_2(T)$, $a_4(T)$, $a_6(T) \in \mathbb{Z}[T]$. For every $t \in \mathbb{Z}$, we let $\mathcal{F}(t)$ denote the specialization of \mathcal{F} at t and note that $\mathcal{F}(t)$ defines an elliptic curve for all but finitely-many t. Moreover, the map which sends \mathcal{F} to $\mathcal{F}(t)$ is injective for all but finitely-many t (Silverman's Specialization Theorem, [14]). From here, we let

$$\varepsilon_{\mathcal{F}}(t) := \begin{cases} \text{the root number of } \mathcal{F}(t) & \text{if } \mathcal{F}(t) \text{ is an elliptic curve,} \\ 0 & \text{otherwise,} \end{cases}$$

and define the average root number of \mathcal{F} over \mathbb{Z} by

$$\operatorname{Av}_{\mathbb{Z}}(\varepsilon_{\mathcal{F}}) := \lim_{T \to \infty} \frac{1}{2T} \sum_{|t| \le T} \varepsilon_{\mathcal{F}}(t),$$

provided the limit exists.

Download English Version:

https://daneshyari.com/en/article/11012902

Download Persian Version:

https://daneshyari.com/article/11012902

Daneshyari.com