ELSEVIER

Computing the average root number of an elliptic surface

Jake Chinis ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ Department of Mathematics, McGill University, 805 Sherbrooke St. W., Montréal, QC H3A 0B9, Canada
${ }^{\text {b }}$ Department of Mathematics, Concordia University, 1455 de Maisonneuve Blvd. W., Montréal, QC H3G 1M8, Canada

A R T I C L E I N F O

Article history:

Received 29 January 2018
Received in revised form 21 July
2018
Accepted 25 July 2018
Available online 22 August 2018
Communicated by L. Smajlovic

MSC:

11G05
11G40
Keywords:
Rank
Root number
Average root number

A B S T R A C T

By considering a one-parameter family of elliptic curves defined over \mathbb{Q}, we might ask ourselves if there is any bias in the distribution (or parity) of the root numbers at each specialization. From the work of Helfgott [8], we know (at least conjecturally) that the average root number of an elliptic curve defined over $\mathbb{Q}(T)$ is zero as soon as there is a place of multiplicative reduction over $\mathbb{Q}(T)$ other than - deg.
In this paper, we are concerned with elliptic curves defined over $\mathbb{Q}(T)$ with no place of multiplicative reduction over $\mathbb{Q}(T)$, except possibly at - deg. In [1], the authors classify all such one-parameter families of elliptic curves whose coefficients, in the parameter T, have degree less than or equal to 2 ; they also use the work of Helfgott to compute the average root number of two particular subfamilies. We complement the work in [1] by computing the average root number of one of these "potentially parity-biased" families and show that it is "parity-biased" infinitely-often.
© 2018 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let E be an elliptic curve defined over \mathbb{Q}. For every prime p, let \tilde{E}_{p} denote the reduction of E modulo p and set $a_{p}:=p+1-\# \tilde{E}_{p}\left(\mathbb{F}_{p}\right)$, where $\# \tilde{E}_{p}\left(\mathbb{F}_{p}\right)$ denotes the number of \mathbb{F}_{p}-points on \tilde{E}_{p}. The L-series associated to E is defined by the Euler product

$$
L(s, E):=\prod_{\substack{p \text { prime } \\ p \mid \Delta}}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{\substack{\text { prime } \\ p \nmid \Delta}}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1},
$$

where Δ is the discriminant of E. It is well known that the product defining $L(s, E)$ converges and gives rise to an analytic function, provided $\Re(s)>\frac{3}{2}$. The Modularity Theorem [17] tells us that much more is true; namely,

$$
\Lambda(s, E):=N_{E}^{\frac{s}{2}}(2 \pi)^{-s} \Gamma(s) L(s, E)
$$

has an analytic continuation to the entire complex plane and satisfies the functional equation

$$
\Lambda(s, E)=w \Lambda(2-s, E)
$$

for some $w=w_{E}= \pm 1$, where $N_{E}=N_{E / \mathbb{Q}}$ is the conductor of E and where $\Gamma(s):=$ $\int_{0}^{\infty} t^{s-1} \mathrm{e}^{-t} d t$ is the Gamma function. We call w the root number of E.

In this paper, we use the techniques developed by Rizzo [11] and generalized by Helfgott [8] to compute the average root number of an explicit family of elliptic curves defined over \mathbb{Q}. By a family of elliptic curves defined over \mathbb{Q}, we mean an elliptic curve defined over $\mathbb{Q}(T)$; equivalently, it is a one-parameter family of elliptic curves given by a Weierstrass equation of the form

$$
\mathcal{F}: y^{2}=x^{3}+a_{2}(T) x^{2}+a_{4}(T) x+a_{6}(T),
$$

for some $a_{2}(T), a_{4}(T), a_{6}(T) \in \mathbb{Z}[T]$. For every $t \in \mathbb{Z}$, we let $\mathcal{F}(t)$ denote the specialization of \mathcal{F} at t and note that $\mathcal{F}(t)$ defines an elliptic curve for all but finitely-many t. Moreover, the map which sends \mathcal{F} to $\mathcal{F}(t)$ is injective for all but finitely-many t (Silverman's Specialization Theorem, [14]). From here, we let

$$
\varepsilon_{\mathcal{F}}(t):= \begin{cases}\text { the root number of } \mathcal{F}(t) & \text { if } \mathcal{F}(t) \text { is an elliptic curve } \\ 0 & \text { otherwise }\end{cases}
$$

and define the average root number of \mathcal{F} over \mathbb{Z} by

$$
\operatorname{Av}_{\mathbb{Z}}\left(\varepsilon_{\mathcal{F}}\right):=\lim _{T \rightarrow \infty} \frac{1}{2 T} \sum_{|t| \leq T} \varepsilon_{\mathcal{F}}(t)
$$

provided the limit exists.

https://daneshyari.com/en/article/11012902

Download Persian Version:
https://daneshyari.com/article/11012902

Daneshyari.com

[^0]: * Correspondence to: Department of Mathematics, McGill University, 805 Sherbrooke St. W., Montréal, QC H3A 0B9, Canada.

 E-mail address: iakov.chinis@gmail.com.

