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PLANE MODEL-FIELDS OF DEFINITION, FIELDS OF

DEFINITION, AND THE FIELD OF MODULI FOR SMOOTH

PLANE CURVES

ESLAM BADR AND FRANCESC BARS

Abstract. Let C/k be a smooth plane curve defined over k, a fixed algebraic

closure of a perfect field k. We call a subfield k′ ⊆ k a plane model-field of

definition for C if C descends to k′ as a smooth plane curve over k′, that is if

there exists a smooth curve C′/k′ defined over k′ which is k′-isomorphic to a

non-singular plane model F (X,Y, Z) = 0 with coefficients in k′, and such that

C′ ⊗k′ k and C are isomorphic. In this paper, we provide (explicit) families of

smooth plane curves for which the three fields types; the field of moduli, fields

of definition, and plane-models fields of definition are pairwise different.

1. Introduction

Let C/k be a smooth projective curve defined over a perfect field k. We say
that C descends to a subfield k′ ⊂ k ⊂ k, where k is a fixed algebraic closure of
a field k, if there exists a smooth projective curve C ′/k′ defined over k′ such that
C ′ ⊗k′ k ∼= C. In this case, k′ is called a field of definition for C. The intersection
of all fields of definition for C⊗k k is called the absolute field of moduli for C and is
denoted by kC . Alternatively, the relative field of moduli to the field extension k/k′

is commonly used in the literature, and it is defined to be the subfield Mk/k′(C)
fixed by the subgroup

{σ ∈ Gal(k/k′) : C ∼=k
σC}.

The main relation between the absolute and the relative field of moduli is due to [8,
Theorem 1.6.9]; kC is a field of definition for C if and only if given any algebraically
closed field K ⊇ k, and any subfield k′ ⊆ K with K/k′ Galois, MK/k′(C ⊗k K) is
a field of definition for C ⊗k K.

Finding fields of definition and/or fields of moduli of varieties is a long standing
problem. It is also very common to ask when the field of moduli for a smooth
projective curve is a field of definition. A necessary and sufficient condition (Weil’s
cocycle criterion of descent) for the field of moduli to be a field of definition was
provided by Weil [17]. If the full automorphism group Aut(C ⊗k k) is trivial, then
this condition becomes trivially true and so the field of moduli needs to be a field
of definition. It is also well known that if C has geometric genus g = 0 then it
is k-isomorphic to the projective line P1, which is defined over k0, the prime field
of k (cf. [5, §1]). Moreover, if g = 1, then the field of moduli is k0(j), where
j is the modular invariant of C, and it is known that for characteristic p �= 2, 3,
C is k-isomorphic to a model defined over k0(j) (cf. [16, Chp. III, Proposition
1.4]). However, if g > 1 and Aut(C ⊗k k) is non-trivial, then Weil’s conditions are
difficult to be checked and so there is no guarantee that the field of moduli is a
field of definition for C ⊗k k. Explicit examples of hyperelliptic curves over C not
definable over their field of moduli were first provided by Earle [6], Shimura [15].
Later on, Huggins [8, 9] proved that a hyperelliptic curve of genus g ≥ 2 defined over
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