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A B S T R A C T

The paper presents an approach to developing the mathematical formalism of the discrete element method to
numerically study the inelastic behavior and fracture of brittle materials under dynamic loading. The approach
adopts the basic principles of the kinetic theory of strength which postulate the finite time of nucleation of
discontinuities and relaxation of local stresses in the material. A general methodology is proposed for con-
structing dynamic (kinetic) models of the mechanical behavior of a discrete element based on quasi-static models
and using three dynamic material parameters (time parameters). The physical meaning of these parameters is
discussed, and a method is proposed for estimating the magnitude of the parameters for a considered material
using standard experimental data on its mechanical characteristics. The approach is verified by a dynamic
formulation of two-parameter models of inelasticity and strength of brittle materials within the method of simply
deformable discrete elements. The proposed way to the dynamic generalization of conventional quasi-static
mechanical models is applicable to various Lagrangian numerical methods and makes it possible to numerically
study the dynamic behavior features and to predict the mechanical characteristics of brittle materials at different
strain rates (up to strain rates 103 s−1) and different types of stress state.

1. Introduction

The macroscopic elastic, inelastic and strength properties of brittle
materials are sensitive to the strain rate and can differ considerably
from the mechanical behavior characteristics determined in quasi-static
loading conditions [1–8]. In particular, a strong dependence of the
strength and inelastic properties on the strain rate ɛ̇ is observed in
brittle materials within the range ɛ̇ >101–102 s−1. The effective elastic
moduli of brittle materials change significantly at the strain rates
ɛ̇ >103 s−1. Therefore, when constructing numerical mechanical be-
havior models for the most typical range of strain rates ɛ̇ < 103 s−1, it is
important to account for the effect of loading dynamics on the inelastic
and strength properties of brittle materials.

The inelastic behavior of brittle materials is mainly associated with
microdamage accumulation (formation of different-size voids and
cracks, their growth or healing, coalescence, collapse, etc.) [9–11].
Lattice defects are involved in the deformation of such materials only at
high pressures and temperatures [12]. Hence the dynamic inelastic
behavior of brittle materials is generally described using modified
plasticity models that account for the high sensitivity of inelastic re-
sponse parameters to pressure, as well as the complex relationship

between shear and volume plastic strains (non-associated flow rules)
[13–20]. Noteworthy among them are the models that use the Druck-
er–Prager criterion and its modifications to describe inelastic de-
formation and fracture. Various implementations of these models are
widely used to simulate the inelastic dynamic mechanical behavior of
brittle solids [21–24].

Classical dynamic models use a conventional approach that ac-
counts for the sensitivity of the inelastic behavior characteristics of the
material to the change in the local strain rate. At the same time, the
strain rate (in contrast to the physical mass velocity) is a technical
parameter characterizing the volume-averaged rate of change in the
dimensions of the specimen or its fragment. As a rule, integral values of
ɛ̇ for the entire specimen are used to determine experimentally the
strain rate dependence of the parameters of the applied plasticity or
fracture model. The local values of ɛ̇ (e.g., in the region of crack nu-
cleation) can differ significantly from the integral value in this case.

An alternative way of describing the inelastic deformation and
fracture of dynamically loaded materials is the kinetic approach de-
veloped by Zhurkov [25], Regel [26], Bratov and Petrov [27], and
Morozov and Petrov [28]. Within this approach, the process of the main
crack nucleation and growth is characterized by a physical parameter
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called the fracture time. In the initial formulation of the kinetic theory,
this parameter is associated with thermal fluctuations in the crystal
lattice, and its magnitude is determined by the temperature and the
applied load. Later it was shown that this physical parameter is scale
dependent, and the hierarchy of the scales is related with the hierarchy
of internal structural elements in the material [29–31]. Petrov and
Morozov applied the kinetic approach to describe the conditions for the
onset of inelastic deformation in the specimen or a fragment of the
material. The proposed dynamic yield criterion takes into account the
finite-time duration of the formation of a spatially distributed system of
microdiscontinuities.

Significant progress in the kinetic approach has been made due to
the introduction of the generalized concept of incubation time, which
characterizes the time duration of the processes bringing about stress
relaxation on the considered spatial scale [28,32,33]. The stress re-
laxation mechanisms can differ qualitatively for various relaxation
processes (inelastic deformation, fracture) and various materials, but
nevertheless these processes can be described within a general ap-
proach.

A widespread approach to studying the dynamic mechanical beha-
vior of materials, including fracture, is numerical simulation in
Lagrangian coordinates using explicit integration schemes [34–37].
Herewith, along with the conventional dynamic models of the inelastic
mechanical behavior, the models based on the kinetic theory of strength
become popular [38–40]. Continuum mechanics based numerical
methods are conventionally used for the numerical study of the features
of deformation of brittle materials under dynamic loading. The classical
method of finite elements (FEM) and its extended formulations (in-
cluding XFEM and PFEM) are the most popular representatives of this
class of methods. We should also mention a novel formulation of FEM
for brittle solids with discontinuities, namely, the dynamic phase field
method [41–44]. However, in the last decade, “discrete” numerical
methods have been actively used to solve dynamic problems. The si-
mulated material in these methods is represented by an ensemble of
interacting elements or particles of finite size and a certain shape that
can change during deformation. An element is considered as a fragment
of the material that can be cohesively/adhesively bonded to neigh-
boring fragments, or be in contact, or not interact with them. Such
methods are called discrete element methods (DEM) [45–49]. A key
advantage of a discrete element is its ability to change the form of in-
teraction with neighboring elements (linked, contact, unlinked), which
provides the possibility to change its environment (the set of neigh-
boring elements). This allows a direct simulation of such complex
fracture processes as multiple cracking with crack branching, intensive
mass transfer, and mixing of fragments [50–54]. Note that owing to the
common formalism of various Lagrangian numerical methods (DEM,
FEM [55–58], DEM+FEM [59,60], PFEM [61], XFEM [34]), general
dynamic models of deformation and fracture of brittle materials can be
constructed and implemented with regard to the capabilities of a par-
ticular method.

Despite the extensive use of discrete element methods for the nu-
merical investigation of deformation and fracture of brittle hetero-
geneous materials, at present time the mathematical formalism of DEM
is limited to conventional quasi-static models of the response of ele-
ments to mechanical loading (applicable at the characteristic strain
rates ɛ̇ < 101 s−1). This restrains application of these very promising
methods to the study of material behavior under high-rate loading. At
the same time, DEM are advantageous for fracture simulation, first of
all, for dynamically loaded brittle materials. To expand the applications
of DEM for mechanical behavior analysis at high strain rates (including
impact loading), rheological models are needed which take into ac-
count the dynamic response features of brittle materials.

In the present paper the new approach to development of dynamic
models within the framework of the numerical Lagrangian discrete
element method is proposed. The proposed approach uses the concept
of the physical (kinetic) theory of strength for a general (dynamic)

formulation of the conventional “quasi-static” yield and strength cri-
teria with taking into account the finite times of local stress relaxation,
damage and crack nucleation. The basic principles of constructing a
“physical” model of the dynamic behavior of brittle materials are illu-
strated in this paper by the example of the movable cellular automata
(MCA) method belonging to the group of methods of simply (homo-
geneously) deformable discrete elements [37,62,63]. Nikolaevsky's
plasticity model of brittle solids [64,65] (non-associated plastic flow
rule with the Mises–Schleicher yield criterion) and the model of failure
with the Drucker–Prager criterion [66] are considered as generalizable
quasi-static models of the inelastic response of discrete elements. It is
shown that the proposed method of dynamic generalization of the
discrete element formalism allows taking into account the deformation
features of brittle solids at strain rates up to ∼103 s−1. The approach is
applicable to various representatives of Lagrangian numerical methods
(including finite element and difference methods), and to various
models and criteria of plasticity and strength of brittle materials.

2. The main approximations of the MCA method and the quasi-
static model

The MCA method belongs to the family of “explicit” discrete ele-
ment methods. The evolution of an ensemble of discrete elements in the
explicit DEM is governed by an explicit numerical solution of the
system of classical equations of motion [48]. The MCA method uses a
widely accepted approximation of equivalent discs or spheres to in-
terpret the element shape in the numerical solution of equations of
motion (this enables the use of simplified Newton–Euler equations of
motion) [47]. Within this approximation, the interaction between two
discrete elements is divided into two independent contributions: central
(oriented along the line connecting the centers of mass of the elements)
and tangential (in the plane transverse to the mentioned line). The
elements are assumed to interact if they have common edges/faces (i.e.,
two contacting equivalent discs/spheres). A consolidated fragment of a
solid is modeled by assuming these contacts to be initially bonded. For
damage/crack faces, such contacts are considered as unbonded [47,67].

The stress-strain state of a discrete element (movable cellular au-
tomaton) is described within the approximation of a homogeneous
stress and strain distribution in the volume of the discrete element
[48,68]. Stresses and strains in the discrete element are determined by
the average stress tensor σαβ and the average strain tensor εαβ. Com-
ponents of the average stress tensor are calculated via surface forces,
namely, by means of the forces of the element response to impacts of
neighbors. A distinctive feature of the MCA implementation of DEM is
the use of a many-body formulation of element-element interaction
forces with the use of mean stresses and strains [37,62,63]. Hence the
mean stresses/strain and the element-element interaction parameters
(forces and relative displacements) are inextricably interrelated. This
permits an easy implementation of various models of elasticity, plasti-
city (including models of inelastic behavior of brittle solids) and frac-
ture, which are conventionally formulated in tensorial form [37,69]. A
detailed description of the general statements of the MCA method is
provided in the references [37,62,63] and sequentially stated in Sup-
plementary Materials.

This paper considers a “dynamic generalization” of the discrete
element implementation of quasi-static macroscopic models of plasti-
city and fracture of locally isotropic brittle materials (a discrete element
is assumed to be filled with an isotropic material). Within a quasi-static
model, the elastic response of an element to the mechanical action of
neighboring elements is described on the basis of the linear Hooke's law
[37,69]. A macroscopic plasticity model is used to describe damage-
induced stress relaxation in an element beyond the yield point. In the
paper we consider a popular model of the inelastic deformation re-
sponse of brittle materials, such as Nikolaevsky's model (non-associated
plastic flow rule). This model was chosen as an example because it
adequately describes the response of a large group of brittle materials
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