
Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Void detection in solder bumps with deep learning

Marc van Veenhuizen
Failure Analysis Product Diagnostic Center, NXP, Nijmegen, the Netherlands

A R T I C L E I N F O

Keywords:
WLCSP
X-ray
Bumps
Voids
Threshold
ImageJ
Deep learning
Neural network
RCNN

A B S T R A C T

Wafer level chip scale packages feature large numbers of solder bumps. These bumps are prone to having voids
arising for instance from outgassing during the solder reflow. These voids are considered a reliability risk for the
thermo-mechanical strength of the solder connection. Screening of bumps on void percentage is therefore re-
quired for quality control. Voids are well captured with X-ray radiography. Void detection in X-ray images is the
topic of this paper. The large number of solder bumps necessitates the detection to be automated. In this article
we first employ conventional threshold based methods to identify voids. Then, we apply a deep learning model
to void percentage detection. We will demonstrate that with a proper training data set deep learning can suc-
cessfully bin solder bumps on their void percentage.

1. Introduction

WLCSP devices are prevalent in the industry as they enable a large
number of IO pads, contacted by solder bumps, without excessive die
area. After mounting devices on PCBs, voids may be present in the
solder bumps. These voids can have various origins, for instance out-
gassing or contraction stresses, both during the reflow process. Voids in
solder bumps are considered a reliability risk since they are believed to
degrade their thermo-mechanical strength if their total area becomes
too large [1]. It is therefore of importance to inspect solder bumps for
the presence of voids.

X-ray radiography is well suited to visualize such voids in a 2D
fashion. Namely, a void appears as a bright region in a dark sur-
rounding since X-rays will be absorbed less in the projected volume of
material of which the void is part, since that volume has lower density
because of the void. Further, the high resolution of X-ray radiography,
on the order of 0.5um, is much smaller than solder bumps and voids,
implying that void content can be mapped accurately. In this work a
180 kV Phoenix Nanomex X-ray inspection tool was used to collect all
X-ray images. The sheer quantity of bumps and voids within necessi-
tates that the detection of voids is done automatically. Analysis of such
images is however complicated in that voids may for instance be
masqueraded by PCB copper traces, vias, or components (on the rear
side of the PCB). Besides, the overall image contrast and brightness will
also vary as a function of magnification, device and PCB, X-ray op-
erator, etc. This makes the automatic detection of voids a challenging
task, since the algorithm needs to cope with all these variations [2].

One way out would be to reduce the number of variations by

imposing for instance strict X-ray machine settings and having different
algorithms for different devices, all this at the cost of versatility.
Another way would be to implement several pre-image analysis steps
that bin the images and each bin has its own void detection algorithm,
at the cost of program complexity. In this article we try a different
approach, namely to involve a deep learning [3] model that is trained
to detect solder bumps and voids within. Training a deep learning
model requires in general a significant data set that we generate by
classifying X-ray images in a conventional way, namely by detecting
voids with threshold techniques, that require adjustment based on the
contents of the image.

The article is organized as follows; first we discuss the threshold
techniques employed to detect voids. Then we describe the deep
learning model used and show the results it gives on a broad image type
data set that comprises images of various devices capturing a rich image
variation.

2. Void detection based on conventional thresholding

X-ray images give a 2-dimensional representation of the solder
bump void content. A typical example image is given in Fig. 1.
Threshold techniques can be employed to detect solder bumps and
voids within. In general, thresholding can be global, that is, a single
threshold for all image pixels, or local, i.e. an individual threshold for
every image pixel. Solder bumps are well detected with global thresh-
olding, such as the isodata algorithm. This would identify the bumps,
together with other objects that have a similar image contrast, as for
instance the vias in Fig. 1. What is a solder bump can then be identified
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by imposing a circularity constraint on the detected objects, with 80%
typically doing the job. In this way, area of interests (AOI) are ex-
tracted, each of which constitutes a bump. Then, the process can be
repeated on each individual AOI to detect voids within. Again,
thresholding is applied but is in general more subtle since the contrast
delta between void and bump can be quite small. Typically, different
threshold algorithms, both global and local ones, have to be tried to
figure out which works best for the image at hand. Moreover, various
correction steps have to be applied to prevent for instance identifying
the solder bump edge (naturally lower contrast) as a void. One can
think here about erosion and dilation steps, and circularity and size
constraints. After identifying all likely voids, their percentage of the
total bump area can then be calculated for each individual bump. In this
way, the algorithm fine-tuned for a single image is found to work quite
well for images of multiple devices taken under similar tool settings.

Such a generic optimizable algorithm was constructed using the
scriptable image-analysis tool Fiji (ImageJ) [4] and the result of ana-
lysing Fig. 1 on voids is shown in Fig. 2. It should be noted that the
threshold algorithm does not always identify all voids but with some
fine-tuning the far majority can be captured. A downside of the
thresholding is that the calculated void area will also depend on the
fine-tuning which therefore gives an additional variation in results.

3. Void detection with deep learning

3.1. Model description

Deep learning has in recent years taken an enormous flight and is
now applied to numerous tasks ranging from machine translation to
object detection. Various software libraries exist that allow a straight-
forward implementation of complex neural networks (NN). In this work
we use Tensorflow [5]. Furthermore, proven models can be readily
employed to new tasks by retraining them with a new dataset.

Images are typically analysed with convolutional neural networks
since these are sensitive to local areas of the image, also called receptive

fields, that are likely spatially correlated. Multiple layers of neurons
(deep network) allow for the detection of increasingly global image
features.

Image analysis can be of several types, namely, classification (de-
termine the class the total image belongs to), object localization (find
the bounding box of an object in an image), object detection (locate
multiple objects in an image), segmentation (find the boundary of an
object in an image). Here, we choose to use a deep learning model that
does object detection in order to find individual bumps and classify
them according to their void percentage. The deep learning model
employed is a region-based convolutional neural network (R-CNN),
namely, the Faster-R-CNN-ResNet-101 model (where 101 is the total
layer depth) that is optimized for the pascal voc image data set [6] and
is therefore deemed suitable for analysing X-ray images.

R-CNN uses a pre-trained convolutional neural network to generate
a feature map from the image. Then, at each point of the feature map a
set of bounding boxes of various aspect ratios is defined, called anchors.
These are input for the Region Proposal Network (RPN) that determines
for each anchor whether its contents are an object or belong to the
background. Also, the anchor offset is determined that maximizes the
overlap with the object. Finally, a region-based CNN is used to classify
the features. The RPN and region-based CNN are trained on a dataset to
minimize the overall loss function. See [7] for a detailed discussion on
Faster R-CNN.

3.2. Data set

Ideally, the void identification model is capable of handling a di-
verse range of X-ray images of various products and tool settings. Such a

Fig. 1. X-ray image of WLCSP device on PCB. This image is used for the eva-
luation of the various void detection models described below.

Fig. 2. Individual solder bumps of Fig. 1 with calculated void percentage
written above each bump, as found using the threshold model.

M. van Veenhuizen Microelectronics Reliability 88–90 (2018) 315–320

316



Download English Version:

https://daneshyari.com/en/article/11016486

Download Persian Version:

https://daneshyari.com/article/11016486

Daneshyari.com

https://daneshyari.com/en/article/11016486
https://daneshyari.com/article/11016486
https://daneshyari.com

