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We study subfields of large fields which are generated by 
infinite existentially definable subsets. We say that such 
subfields are existentially generated.
Let L be a large field of characteristic exponent p, and let 
E ⊆ L be an infinite existentially generated subfield. We show 
that E contains L(pn), the pn-th powers in L, for some n < ω. 
This generalises a result of Fehm from [4], which shows E = L, 
under the assumption that L is perfect. Our method is to 
first study existentially generated subfields of henselian fields. 
Since L is existentially closed in the henselian field L((t)), our 
result follows.

© 2018 Elsevier Inc. All rights reserved.

Large fields were introduced in [9] by Pop: A field L is large1 if every smooth curve 
defined over L with at least one L-rational point has infinitely many L-rational points. 
A survey of the theory of large fields is given in [2].

Our fields have characteristic exponent p, i.e. p is the characteristic, if this is positive, 
and otherwise p = 1. A subset X ⊆ L is existentially definable if it is defined by an 
existential formula from the language of rings, allowing parameters. We denote by (X)
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the subfield generated by X. A subfield E ⊆ L is existentially generated if there is an 
infinite existentially definable subset X ⊆ L which generates E, i.e. E = (X).

In section 5 we prove the following theorem.

Theorem 1. Let L be a large field of characteristic exponent p, and let E ⊆ L be an 
existentially generated subfield. Then we have

L(pn) ⊆ E,

for some n < ω, where L(pn) = {xpn |x ∈ L} is the subfield of pn-th powers.

The motivation for this work was the following result of Arno Fehm.

Theorem 2 (Corollary 9, [4]). A perfect large field L has no existentially L-definable 
proper infinite subfields.

In fact, using our terminology, Fehm’s method immediately shows that a perfect large 
field L has no existentially generated proper subfields. For imperfect L and each n < ω, 
the subfield L(pn) is existentially definable, without parameters, by using the Frobenius 
map. Moreover, if we use parameters then we are able to existentially define various 
extensions of the subfields L(pn). Thus, our result generalises Theorem 2 by removing 
the assumption that L is perfect. On the other hand, if the characteristic of L is zero, 
then L is necessarily perfect, so Fehm’s result already applies.

The key to our method is to study the same problem in a henselian field K, i.e. a 
field equipped with a nontrivial henselian valuation. First, we recall some facts about 
separable field extensions in section 1. Then in the context of an arbitrary field, in 
section 2 we introduce and study ‘big subfields’; and in section 3 we introduce and study 
‘uniformly big subfields’. In section 4 we show that existentially generated subfields of 
henselian fields are uniformly big, and that they contain ‘sufficiently many’ points of 
K(p∞). From this we can deduce Theorem 1, restricted to henselian fields. Finally, in 
section 5, we use the fact that L is existentially closed in the henselian field L((t)) to 
finish the proof of Theorem 1.

Notation. Throughout, C, E, F, K, L will denote fields, C will usually be a subfield ‘of 
parameters’, K will be henselian, and L will be large. To avoid confusion between Carte-
sian products and sets of powers, for n < ω and a set X, we let Xn = X × . . . × X

denote the n-fold Cartesian product, and let X(n) = {xn|x ∈ X} denote the set of n-th 
powers of elements from X. Sometimes it will be convenient to think of tuples as being 
indexed by a tuple of variables. If x = (x1, ..., xm) is an m-tuple of variables, we write 
Xx for the set of m-tuples from X indexed by x.

Let x = (x1, ..., xm), y = (y1, ..., yn) be two tuples of variables. Despite the abuse of 
language, we say x is a subtuple of y if {x1, ..., xm} ⊆ {y1, ..., yn}. In this case, we write 
prx : Xy −→ Xx for the projection that maps each y-tuple to its subtuple corresponding 
to x.
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