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H I G H L I G H T S

• Time-varying variables are modeled in terms of amplitude and profile.

• Probabilistic adaption of initial plans to multiple states is considered.

• The MINLP-based DSEP is solved by an integrated CE and DE algorithm.

• A three-hierarchy parallel platform reduces CPU time of DSEP.

• Flexibility of DSEP is enhanced and extra adaption costs are reduced.
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A B S T R A C T

With the development of smart grid and electricity market, the uncertainty for power flow is greatly aggravated,
and thus leads to a great challenge on the traditional expansion methods for distribution systems to satisfy the
future demands. In this paper, a data-driven multi-state distribution system expansion planning (DSEP) model is
explored. Innovatively, amplitude values and profiles of uncertain factors in distribution systems are considered
separately. Based on the massive historical measurement data, kernel density estimation and adaptive clustering
are utilized to aggregate the typical amplitudes and profiles of time-varying variables respectively without prior
knowledge. Consolidating all the uncertain factors, a multi-state model is established which extends DSEP into
the deterministic initial planning and the probabilistic re-planning. The minimization of the overall planning
cost is considered as the objective, which takes the initial planning costs and the expected costs of the initial
plans being adapted to other future states into account. In this way, the flexibility of DSEP can be greatly
enhanced and extra investments caused by frequent adjustments of plans are reduced. To avoid the rapid growth
of CPU time due to multi-state model utilization, an integrated differential evolution and cross entropy algorithm
implemented on a three-hierarchy parallel platform is proposed. The feasibilities of the proposed data-driven
multi-state DSEP model and the parallel integrated solution method are demonstrated by numerical studies on a
realistic 61-bus distribution system.

1. Introduction

1.1. Background and literature review

The distribution system expansion planning (DSEP) is a classic
problem in power systems. Conventional DSEP studies care about the
optimal expansions of distribution network assets to satisfy the fore-
casted load with the technical and economic constraints be respected
[1]. The expansions include replacement and addition of feeders,

reinforcement of existing substations, construction of new substations,
and installation of new transformers. There are two types of DSEP
models: static and multistage [2]. In the static DSEP, objective is aimed
at accommodating the demand projected at the end of the planning
period. The multistage DSEP defines not only the ideal investments, but
also the most appropriate time to implement such investments. Due to
the coupling between stages, it is much more difficult to formulate and
solve the multistage DSEP [3].

DSEP is highly complex and NP-hard, due to the binary decision

https://doi.org/10.1016/j.apenergy.2018.09.202
Received 3 May 2018; Received in revised form 12 September 2018; Accepted 24 September 2018

⁎ Corresponding author.
E-mail address: yiding@zju.edu.cn (Y. Ding).

Applied Energy 232 (2018) 9–25

0306-2619/ © 2018 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2018.09.202
https://doi.org/10.1016/j.apenergy.2018.09.202
mailto:yiding@zju.edu.cn
https://doi.org/10.1016/j.apenergy.2018.09.202
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2018.09.202&domain=pdf


variables of constructions and allocations of assets and the high number
of continuous state variables of system operation. Comprehensive re-
views of the solution methods for DSEP are given in [4,5]. Mathema-
tical optimization methods such as linear mixed-integer programming
[1], second-order cone programming [6], benders decomposition [7]
and Branch and bound [8] have been observed to have potential issues

of convergence and local optima trap. Evolutionary algorithms, e.g.,
genetic algorithm (GA) [9], particle swarm [10] and simulated an-
nealing [11] are easy to use though they are subject to stochastic errors
of solutions. Due to the growing scale and aggravating data-intensity
and nonlinearity of DSEP, evolutionary algorithm has received in-
creasing attention and developed into a mainstream for solving DSEP

Nomenclature

Acronyms

DSEP distribution system expansion planning
DR demand response
DG distributed generation
ES energy storage
EV electric vehicles
IES integrated energy system
GA genetic algorithm
DE differential evolution
CE cross entropy
PDF probabilistic density function
WTG wind turbine generator
PV photovoltaic
TOU time of use
RTP real time pricing
CNY chinese yuan
UA uncertainty analysis
DED day-ahead economical dispatching
AMI advanced metering infrastructure
GIS geographic information system
MIS meteorological information system
SMP shared-memory processor
MPI message passing interface
LSE load service entity
CHP combined heat and power production
CHCP combined heat, cooling, and power production
KDE kernel density estimation
PAA piecewise aggregate approximation
DB davies-bouldin
ISE integral square error
MINLP mixed-integer nonlinear programming

Sets

ΩL, ΩA set of candidate feeders and set of available feeder types
respectively

ΩSR, ΩSO sets of existing substations with and without reinforce-
ment options respectively

ΩSC set of candidate substations
ΩS set of substations, defined as = ∪ ∪Ω Ω Ω ΩS SR SO SC

ΩR, ΩC sets of available capacity types for substation reinforce-
ment and construction respectively.

ΩN set of nodes in the distribution system of interest
T set of time intervals
Ωi

plot set of land plots fed by node i

Variables and parameters

xij a,
L binary decision variable for feeder i-j with type a

yi b,
SR binary decision variable for substation reinforcement at

node i with type b
yi c,

SC binary decision variable for substation construction at
node i with type c

πL, πS capital recovery factors for feeders and substations

respectively
a, b, c Type code for feeder construction, substation reinforce-

ment and substation construction respectively.
cij a,

L construction cost of feeder i-j with type a (CNY/km)
ci b,

SR reinforcement cost of substation i with type b (CNY)
ci c,

SC construction cost of substation i with type c (CNY)
lij length of feeder i-j (km)
ci

oper substation operation cost at node i (CNY/MVA)
δ days in a year
cE network loss cost (CNY/MWh)
gij a, , bij a, conductance and susceptance of feeder i-j with type a
Gij, Bij real part and imaginary part of the nodal admittance

matrix
nL, nS feeder lifespan and substation lifespan
θij t, the phase angle deviation of feeder i-j in time interval t
ε interest rate
Pi t,

S , Qi t,
S active and reactive power injections at node i in time t

(MW, Mvar)
S̄ij a, apparent power capacity of feeder i-j with type a (MVA)
S̄i

0 apparent power capacity of the existing substation at node
i (MVA)

S̄i b,
SR added apparent power capacity of the existing substation

with reinforcement type b at node i (MVA)
S̄i c,

SC apparent power capacity of the candidate substation with
type c at node i (MVA)

U̲ i, Ūi voltage limits of node i
nD, nSub numbers of nodes and substations in a distribution system
nT intervals number in a day
Pi t,

CH, Pi t,
ES the equivalent demand and charging/discharging power

of ES at node i in time t
Pi t,

DG, Qi t,
DG active and reactive powers of DG at node i in time t (MW,

Mvar)
Pi t,

D, Qi t,
D active and reactive power demands at node i in time t

(MW, Mvar)
κt electricity price in time t (CNY)
ut ternary decision variable for battery states: 1→ charging,

−1→ discharging; 0→ floating
α weight coefficient
Si t,

ES electric quantity of ES at node i in time t
Smax

ES , Smin
ES electric quantity limits of ES at node i

Pmax
cha , Pmax

dis the charging and discharging power limits
NT the charging and discharging times limit within a period
ϒ leakage constant of energy storage battery
χ the simultaneity factor of spatial load
Sj, γj the area and load density of land plot j (m2, W/m2)
χc

2, Dc statistical thresholds of χ2 test and Kolmogorov–Smirnov
K-S test

hopt the optimal bandwidth of kernel density estimation
Ci, ci CLUSTER i of vectors and the centroid of this cluster
v v v v, , ,w c R F real, cut-in, rated, and cut-out wind speeds
η, vs photovoltaic conversion efficiency and solar irradiance

grade
Nw, Np number of WTGs and number of PV module
pw, spv rated power capacity of WTG and area of each PV module
T1, Tm average CPU time of the optimization run on 1 and m

processors
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