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In this paper, the two-level finite difference schemes for the one-dimensional heat equa- 

tion with a nonlocal initial condition are analyzed. As the main result, we obtain con- 

ditions for the numerical stability of the schemes. In addition, we revise the stability 

conditions obtained in [21] for the Crank–Nicolson scheme. We present several numerical 

examples that confirm the theoretical results within linear, as well as nonlinear problems. 

In some particular cases, it is shown that for small regions of the time step size values, 

the explicit FTCS scheme is stable while certain implicit methods, such as Crank–Nicolson 

scheme, are not. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Mathematical models arising in various fields of science and engineering very often are expressed in terms of partial 

differential equations (PDEs) with nonlocal initial or boundary conditions. For example, we can mention models arising in 

thermoelasticity [1] , thermodynamics [2] , geology [3] , hydrodynamics [4] , biological fluid dynamics [5] or plasma physics 

[6] . The present paper is focused on differential problems with nonlocal initial conditions . Such problems generalize the 

classical or time-periodic problems and can be seen as the control problems with initial conditions. 

Nonclassical problems with nonlocal initial conditions are important because of their practical applications in modeling 

and investigation of sewage caused pollution processes in rivers and seas. Such problems are also used when investigating 

radionuclides propagation in Stokes fluid, diffusion and flow in porous media [7–9] . Nonlocal initial conditions also arise in 

mathematical models applied in meteorology since the use of time-averaged data instead of the initial data only leads to 

more reliable long-term weather forecasts [10] . 

In this paper, as a model problem we consider the one-dimensional parabolic (heat) equation 

∂u 

∂t 
− ∂ 2 u 

∂x 2 
= f (x, t) , (x, t) ∈ � × (0 , T ) , (1) 

subject to homogeneous boundary condition 

u (x, t) = 0 , (x, t) ∈ ∂� × (0 , T ) , (2) 
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and nonlocal discrete–integral initial condition 

u (x, 0) = 

m ∑ 

j=1 

α j u (x, T j ) + 

∫ T 

0 

υ(τ ) u (x, τ ) d τ + ϕ(x ) , x ∈ �. (3) 

Here � = (0 , L ) is a spatial interval, αj � = 0, 0 < T j ≤ T (1 ≤ j ≤ m ), υ ∈ L 1 (0 , T ) . 

Nonlocal in time problems for parabolic equations were considered in [11] and, later, in [7–9,12–14] (see also references 

therein). The solvability of various differential problems with nonlocal initial conditions systematically has been studied in 

papers [15–18] . 

The existence and uniqueness results related to the problem (1) –(3) are given in paper [17] . If ϕ ∈ L 2 ( �), 

f ∈ L 2 ([0 , T ] ; H 

−1 (�)) and 

1 −
m ∑ 

j=1 

α j + | α j | 
2 

≥
∫ T 

0 

| υ(τ ) | d τ, 

then the problem (1) –(3) has a unique solution u ∈ C 0 ([0 , T ] ; L 2 (�)) ∩ L 2 ([0 , T ] ; H 

1 
0 (�)) . 

In recent decades, numerical methods for the solution of PDEs with nonlocal boundary conditions are developed and 

investigated very actively. However, only a few studies are related to the numerical solution of PDEs with nonlocal initial 

conditions. For example, the error estimates for the semidiscrete finite element approximation of the solution to linear 

parabolic equation have been obtained in paper [19] . Iterative finite element approximations of the solutions to parabolic 

equations with certain nonlocal initial conditions have been studied in [20] . For the numerical solution of nonlinear 

parabolic problems with a nonlocal initial condition, iterative finite difference schemes have been proposed and analyzed 

in [21,22] . In papers [23,24] , the finite difference schemes for the one-dimensional parabolic (heat) equation with nonlocal 

discrete initial conditions were examined. For the solution of this problem, a polynomial-based collocation technique has 

been suggested in paper [25] . 

For the numerical solution of nonlinear parabolic problems with a nonlocal initial condition, and iterative finite dif- 

ference scheme has been investigated in papers [21,22] . In [21] , the stability and convergence of several finite difference 

schemes have been studied. 

In this paper, we extend the results presented in paper [21] to a more general class of methods, including numerical 

schemes which were applied previously without studying their stability properties. Additionally, we revise Theorem 3.2 

proved in the paper [21] by adding a new constraint for the time step size. The revised analysis leads to the stability 

conditions which were not considered in [21,23] . The numerical results presented in this paper show that conditions 

provided in [21,23] cannot guarantee the stability of the corresponding numerical schemes. Also, we demonstrate that 

in some particular cases the forward-time central-space (FTCS) explicit numerical scheme is stable, while some implicit 

methods (such as Crank–Nicolson scheme) are not. From the point of view of the classical theory of finite difference 

schemes, this is a quite surprising result. The examined methods can be naturally extended for nonlinear problems. For 

illustration, we present the results of a numerical experiment with a nonlinear problem. 

The paper is organized as follows. The two-level finite difference schemes for the solution of the considered nonclassical 

problem are presented in Section 2 . In Section 3 , we analyze these schemes by studying their stability and accuracy prop- 

erties. To verify the theoretical results and demonstrate the efficiency of the methods, several numerical experiments have 

been conducted. The results of these experiments are presented in Section 4 . Finally, some remarks in Section 5 conclude 

the paper. 

2. Two-level finite difference schemes 

For the numerical solution of the considered problem (1) –(2) we apply the finite difference technique [26–29] . We 

construct a family of finite difference schemes depending on several parameters. 

The problem domain �× [0, T ] is discretized by the uniformly distributed grid points ( x i , t n ), where 

x i = ih, i = 0 , 1 , . . . , N, Nh = L, 

t n = nτ, n = 0 , 1 , . . . , M, Mτ = T , 

where h and τ are space and time step sizes. We assume that { T 1 , T 2 , . . . , T m 

} ⊂ { t 0 , t 1 , . . . , t M 

} and T j = t n j for some 

n j ∈ { 0 , 1 , . . . , M} . 
The one-dimensional parabolic equation (1) is approximated by the following finite difference equations: 

u 

n +1 
i 

− u 

n 
i 

τ
= σ

u 

n +1 
i −1 

− 2 u 

n +1 
i 

+ u 

n +1 
i +1 

h 

2 
+ (1 − σ ) 

u 

n 
i −1 

− 2 u 

n 
i 

+ u 

n 
i +1 

h 

2 

+ c 00 f 
n +1 
i −1 

+ c 01 f 
n +1 
i 

+ c 00 f 
n +1 
i +1 

+ c 10 f 
n 
i −1 + c 11 f 

n 
i + c 10 f 

n 
i +1 , (4) 

where σ is the weight of the scheme (0 ≤σ ≤ 1), and c 00 , c 01 , c 10 , c 11 are coefficients to be determined later (see 

Section 3.2 ). Depending on the values of σ , we distinguish several special cases: 

• σ = 1 : the backward-time central-space (BTCS) scheme; 
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