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a b s t r a c t

To identify the distribution of fuel debris remaining in the reactor vessel and/or the containment vessel of
Fukushima Daiichi NPS, we focused on the inverse estimation of radioactive source distribution using the
measured radiation counts. The Maximum Likelihood-Expectation Maximization (ML-EM) and the
Moore-Penrose Matrix Inverse (MPMI) methods are examined. The ML-EM method has been used for
the image reconstruction of computed tomography, and the MPMI method is one of the solution methods
for simultaneous linear equations with the underdetermined condition. A simple calculation model sim-
ulating a containment vessel was constructed including detectors and radiation sources. In an actual sit-
uation, a sufficient number of radiation measurement positions would not be available owing to the
complexity of structures inside the containment vessel. Thus, the number of radiation measurement
points (number of constraints) is smaller than that of radiation source positions. It means that an
underdetermined inverse problem should be solved. The detection probability of radiation (neutron or
photon) is calculated by the adjoint transport calculation since the detection probability is used as the
coupling coefficient between radiation counts at a detector and a radioactive source. The result of estima-
tion using the ML-EM or the MPMI method indicates that the accuracy of estimation depends on the
distance between a radiation source and a detector, and measurement positions of radiation count.
The ML-EM and the MPMI methods show different prediction accuracy depending on the prediction con-
dition. It is found that reasonable prediction accuracy would be obtained when the detectors are placed at
the vicinity of radiation sources of interest.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In Fukushima Daiichi Nuclear Power Plant (1F), decommission-
ing of severely damaged nuclear reactors is being carried out. The
retrieval of fuel debris remaining in the reactor pressure vessel
and/or the containment vessel (RPV/CV) is expected as one of the
most difficult tasks since we have few past experiences of similar
works. Information on the distribution of fuel debris in RPV/CV is
essential to establish a roadmap to remove it, to prevent an unex-
pected re-critical accident during removal works, and to determine
radiation shielding from fuel debris during removal works. Espe-
cially the risk of re-criticality of fuel debris during removal works
is studied in Tonoike et al. (2015) and so on, and it is one of the
potential issues in the decommissioning of 1F.

Investigation of fuel debris using muon suggested that most of
the fuel debris would not exist in RPV of Unit 1. In Unit 3, a robot

was sent to the inside of the CV in July 2017 and something
(possibly fuel debris) once melted and then frozen was found at
the bottom of the CV. Contrary, in Unit 2, most of the fuel debris
would still exist at the RPV bottom head (Tokyo Electric Power
Company, 2016). However, more detail estimation of fuel debris
distribution is highly desirable to establish a removal plan of fuel
debris. Location identification of fuel debris is being tried, e.g., in
Katakura et al. (2016), but the improvement of reliability of predic-
tion results is desirable using various approaches.

In this study, we try to estimate the distribution of radiation
sources using multiple measurement results of radiation and
inverse analysis methods, i.e., the Maximum Likelihood-
Expectation Maximization (ML-EM) method (Shepp and Valdi,
1982) and the Moore-Penrose Matrix Inverse (MPMI) method
(Ben-Israel and Greville, 2003). In these inverse analysis methods,
detection probability of a radiation emitted from a radiation source
is necessary. Though various approaches can be used to evaluate
the detection probability, an adjoint transport calculation using
the discrete ordinate method is adopted. The idea of using detector
counts for the estimation of radiation sources is similar to the
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study in Shikaze et al. (2016). A simplified calculation model of the
CV is constructed and used for analysis. Through verification calcu-
lations, the effectiveness and validity of the present method are
confirmed.

In Section 2, the theories of inverse estimation methods are
described. The calculation procedures and results are described
in Sections 3 and 4, respectively. Finally, concluding remarks are
summarized in Section 5.

2. Theory

The structures inside RPV/CV are complicated as well as the dis-
tribution of fuel debris. On the other hand, measurement points of
radiation inside RPV/CV will be very limited. Therefore, the inverse
problem of this study should treat an underdetermined system,
where the number of unknowns (radioactivity) is larger than that
of constraint conditions (radiation measurement results by detec-
tors). Note that distribution of actual radioactivity would be spa-
tially continuous but it is spatially discretized in the inverse
estimation. Therefore, number of unknowns depends on spatial
discretization, i.e., number of unknowns becomes larger or smaller
with detail or coarse discretization, respectively.

There are some techniques to estimate a plausible solution for
such an inverse problem. In this study, we use the following two
methods: One is the ML-EM method; another is the MPMI method
to conduct inverse estimation. In the present study, the original
three-dimensional geometry is approximated by the two-
dimensional R-Z geometry.

There are various sources of uncertainty that affect the inverse
estimation results and they are discussed in Section 2.3. However,
the uncertainties are not explicitly taken into account in the pre-
sent study since the purpose of the present study is the proof of
principle using simplified conditions.

2.1. Maximum Likelihood-Expectation Maximization (ML-EM) method

The ML-EM method is one of the inverse estimation techniques
based on the Bayesian theory. The ML-EM method is effectively
utilized in the image reconstruction of computed tomography
(CT) (Słomski et al., 2014; Parra and Barrett, 1998). The inverse
problem of this study is similar to that of CT, thus we try applying
the ML-EM method to estimate radioactivity distribution. There
are other inverse estimation methods (Parra and Barrett, 1998;
Tsui et al., 1991), but they are not used in this study except for
the ML-EM and the MPMI methods.

As previously described, the radioactivity distribution is spa-
tially discretized and treated as the discretized point sources
whose number is J. The radioactivity can be estimated by a proba-
ble radioactivity at point j (Aj) and the measured radiation count of
detector i (yi). In the ML-EM method, radioactivity is updated with
an iterative procedure using the probable radioactivities obtained
by the previous iteration or by the initial guess. Using Eq. (1), the
estimated radioactivity distribution can be finally obtained as the
converged solution:

Akþ1
j ¼ Ak

jPI
i¼1Cij

XI

i¼1

yiCijPJ
j¼1CijA

k
j

; ð1Þ

where notations are defined as follows; A: radioactivity of point
radiation source, y: radiation count of detector, i: detector index
(from 1 to I), j: radiation source index (from 1 to J), Cij: detection
probability of a radiation at detector ðiÞ emitted from radiation
source ðjÞ, k: number of iterations in the ML-EM method.

Eq. (1) is derived using the Poisson distribution and the Bayes’
theorem. The ML-EM method has the property of Bayesian estima-
tion that provides more plausible estimation from the observation

results and the probable estimation that comes from the previous
iteration of the initial guess.

2.2. Moore-Penrose matrix inverse (MPMI) method

The inverse problem for radioactivity in this study can be
expressed by the following simultaneous linear equations:

CA
!� y!; ð2Þ

where C is a I � J matrix of detection probabilities, I and J are the

numbers of detectors and radiation source points, respectively, A
!

is the spatially discretized radiation source, y! is the measured radi-
ation count at each detector. For example, Eq. (2) is rewritten as Eq.
(3) when the numbers of detectors and radiation sources are 2 and
3, respectively:
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Fig. 1 describes this situation.
Simultaneous linear equations of an underdetermined system

cannot be solved by a normal inverse matrix. However, even in this

case, the minimum L2-norm solution A
!

MPMI can be numerically
solved using the MPMI method (Wolfram, 2017; Chen et al., 2017):

A
!

MPMI ¼
C11 C12 C13

C21 C22 C23

� �þ y1
y2

� �
; ð4Þ

where the superscript + means the Moore-Penrose pseudoinverse.
The L2-norm minimization condition is necessary to uniquely

obtain the solution of A
!

for an underdetermined system. For exam-
ple, when the numbers of constraint conditions and unknowns are
respectively 2 and 3, all solutions of A1;A2;A3ð Þ satisfying Eq. (2)
correspond to arbitrary points on the plane-plane intersection, i.e.,
C11A1 þ C12A2 þ C13A3 ¼ y1 and C21A1 þ C22A2 þ C23A3 ¼ y2. The
minimum L2-norm solution AMP;1;AMP;2;AMP;3ð Þ corresponds to the
nearest point from the origin 0;0; 0ð Þ among the intersection. In
the inverse estimation of radiation source distribution, the mini-
mization of the L2-norm is applied to the spatially discretized radi-
ation source, y!. Therefore, as discussed in Section 3, the elements in
y! (the discretized point radiation sources) tend to become as small
as possible while satisfying Eq. (2).

Numbers of radiations counts (yi) and the discretized radiation
sources (Aj) used in realistic calculations is larger than those of the
above toy problem (2 and 3, respectively). For example, numbers of
radiations counts (yi) and the discretized radiation sources (Aj) are
12 and 128, respectively, in the numerical calculations in Section 4.
Extension to such realistic condition is straightforward, i.e., just
increase the numbers of detectors and the discretized radiation
sources in Eq. (2). Note that geometrical modeling is independent
from the calculation procedures of the ML-EM or the MPMI method
since geometrical positions of detectors or radiation sources do not
directly appear in Eq. (2).

In order to numerically solve A
!

MPMI , the singular value decom-
position is used. We can perform the singular value decomposition
by the proper matrices of U;V, and the singular matrix of C:

Fig. 1. Three radiation sources and two detectors.
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