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Nanomaterials are widely used in engineering applications. For nanostructures, surface effects usually have a 

significant impact on the mechanical properties of micro/nano materials and structures. This paper investigates 

the dynamic stability of a thin rectangular plate with surface effects under a nonconservative force. Based on the 

Kirchhoff plate theory incorporating surface elasticity, Hamilton’s principle is employed to derive a governing 

partial differential equation subject to appropriate boundary conditions. A characteristic equation describing the 

load–frequency interaction curves is obtained. The load–frequency interaction curves are displayed graphically for 

various tangency coefficients. The effects of surface stress and surface mass on the frequencies and buckling loads 

are highlighted. Surface effects on the transition from divergence instability to flutter instability are analyzed. 

The surface stress and surface mass play a crucial role in affecting flutter loads of nanostructural instability. The 

obtained results are of benefit to safety design of micro/nano scale plates subjected to compressive loading and 

generalized follower force in nonconservative systems. 

1. Introduction 

Plates as a part of structures have been widely used in engineering 

applications. With the development of micro/nano-electro-mechanical 

system (MEMS) and human powered MEMS-based energy harvest de- 

vices, the thickness of devices may fall to micro or nano-meter order 

[1,2] . Especially for micro/nanometer order plate-like structures, be- 

cause of the increase of specific surface area, thickness-dependent prop- 

erties are notable as compared to macroscopic materials [3,4] . To ac- 

count for size-dependent properties, Gurtin and Murdoch [5,6] devel- 

oped a three-dimensional continuum theory with consideration of sur- 

face stress. In the context of the Gurtin–Murdoch surface elasticity the- 

ory, the surface of a solid is considered as a mathematical layer of zero 

thickness which has the entirely different material properties from the 

bulk enwrapped by the surface, and moreover there is no slip between 

them. Based on the extended elasticity theory incorporating surface elas- 

ticity, considerable attention has been attracted to investigate the influ- 

ence of surface stress along with surface elasticity on the mechanical 

behavior of nanoplates or nanobeams in recent years. Lu et al. [7] pro- 

posed a thin plate theory including surface effects accounting for size- 

dependent static and dynamic analysis of plate-like thin film structures. 

Bending and bulking of Mindlin nanoplates incorporating surface energy 

have been studied in [8,9] . Ru [10] formulated a strain-consistent elastic 
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plate model for various edge constraints. In addition, beam- and plate- 

like nanosensors can be used to identify zeptogram-scale mass [11,12] . 

Lachut and Sader have examined the influence of the surface stress on 

resonance frequencies and stiffness of thin cantilever plates. Static de- 

flections of a cantilever beam or plate have been analyzed in [13,14] . 

Wang and Zhao [15] investigated the size-dependent self-buckling and 

bending behaviors of nanoplates with surface elasticity and surface ten- 

sion. The size-dependent transverse vibration of circular and rectangular 

nanoplates with consideration of surface elasticity and residual stresses 

within the framework of the Kirchhoff theory has been respectively stud- 

ied [16,17] . The effect of surface stress on the vibration and buckling of 

a circular and rectangular nanoplate has been analyzed by Ansari et al. 

[18,19] . Later, Cheng and Chen [20] extended the classical thin plate 

theory to include high-order surface stress and tackled resonance fre- 

quency and buckling behavior of circular and rectangular nanoplates. 

Yan and Jiang [21] made an analysis of the vibration and buckling be- 

havior of a simply supported piezoelectric nanoplate with the surface ef- 

fects. Wang and Wang [22] developed a continuum finite element model 

for the bending and vibration behaviors of nanoplates with surface ef- 

fects. Recently, for a thin plate with through-thickness crack and rigid 

inclusion with surface effects being considered, a singular stress analysis 

near the crack/inclusion tip has been formulated and the surface effect 

on the stress intensity/singularity factors has been revealed in [23,24] . 
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Fig. 1. Schematic of a simply supported rectangular nanoplate under uniformly 

distributed subtangential follower force P . 

Although a lot of studies on free vibration and buckling of nanoplates 

have been reported in recent years, nearly all the related works men- 

tioned above are focused on the condition of a conservative force. As 

well known, in engineering applications, most loads are nonconserva- 

tive, particularly for aerodynamic and hydrodynamic loads, such as 

plates, beams, pipes conveying fluid and rocket subjected to noncon- 

servative forces. When subjected to such nonconservative loads, great 

progress has been made for classical beams or plates [25–28] . For 

nanobeams subjected to nonconservative forces, the surface effect on 

flutter instability of a nanocantilever subjected to a generalized follower 

force has been studied for various boundary conditions [29–31] . For 

nanoplates subjected to nonconservative forces, there are little informa- 

tion on the work related to the surface effects on dynamic stability of 

nanoplates. 

With the development of nanotechnology, nanomaterials and nanos- 

tructures have wide applications in engineering of a variety of fields. In 

this paper, we investigate dynamic instability of a micro/nano scale rect- 

angular plate incorporating surface effects. Compared to classic plates 

subjected to nonconservative forces, the emphasis of this paper is placed 

on the influences of surface properties on the dynamic stability of plates 

under nonconservative force, in particular flutter and divergence insta- 

bility. The surface properties include surface elasticity, surface residual 

stress and surface mass density. Within the framework of the Kirchhoff

plate theory, we get the governing partial differential equation accord- 

ing to Hamilton’s principle. The influences of surface effects on flutter 

load, divergence load and the type of instability are shown by graphs 

and tables in detail. The results obtained in this paper can connect sci- 

entific research with engineering application, therefore help to safety 

design of nanostructures exposed to a distributed force due to fluid or 

wind in nonconservative systems. 

2. Basic equations 

A schematic of a rectangular plate of length a , width b and thickness 

h with surface effects is shown in Fig. 1 . According to the Cartesian coor- 

dinate system shown in Fig. 1 , two opposite edges, 𝑥 = 0 , 𝑎, are assumed 

to be simply supported, and the other two opposite edges, 𝑦 = ± 𝑏 ∕2 , are 

subjected to a uniformly-distributed subtangential follower force with 

same magnitude ( Fig. 1 ). When the thickness of the plate falls down 

to nanometer order, surface effects should be taken into account and 

cannot be neglected. For this reason, the theory of surface elasticity the- 

ory originally proposed by Gurtin and Murdoch [5] is invoked in the 

following analysis. As a result, the constitutive equations read 

𝜎𝑖𝑗 = 𝜆𝜀 𝑘𝑘 𝛿𝑖𝑗 + 2 𝜇𝜀 𝑖𝑗 , (1) 

for bulk material, where 𝜆 and 𝜇 are Lame constants, 𝛿ij the Kronecker 

delta, 𝜀 ij the strain tensor, 𝜎ij the stress tensor, 𝜀 𝑖𝑗 = 0 . 5 
(
𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 

)
, and u j 

the displacement vector. For surface material adhere to a bulk material, 

the constitutive equations read [5,32] 

𝜎𝑠 
𝛼𝛽

= 𝜎0 𝛿𝛼𝛽 + 

(
𝜆𝑠 + 𝜎0 

)
𝜀 𝑠 
𝛾𝛾
𝛿𝛼𝛽 + 2 

(
𝜇𝑠 − 𝜎0 

)
𝜀 𝑠 
𝛼𝛽

+ 𝜎0 𝑢 
𝑠 
𝛼,𝛽
, (2) 

𝜎𝑠 
𝛼𝑧 

= 𝜎0 𝑢 
𝑠 
𝑧,𝛼
, (3) 

where 𝜎0 is the surface residual stress, a quantity with the superscript 

s represents the one for the surface material. For example, 𝜆s and 𝜇s 

are the surface Lame constants, which are related to surface Young’s 

modulus E s and surface Poisson’s ratio 𝜈s by 

𝜆𝑠 = 

𝐸 𝑠 𝜈

(1 + 𝜈𝑠 )(1 − 2 𝜈𝑠 ) 
, 𝜇𝑠 = 

𝐸 𝑠 

2(1 + 𝜈𝑠 ) 
. (4) 

In the following analysis, due to little change of Poisson’s ratio, it is 

assumed that 𝜈 = 𝜈𝑠 . In the above, Latin subscripts i, j, k take values 

from 1 to 3, and Greek subscripts 𝛼, 𝛽, 𝛾 range from 1 to 2. A comma 

in subscript denotes differentiation with respect to the coordinate vari- 

able following. A convention that repeated indices imply summation has 

been used. 

For a thin rectangular plate, within the framework of the Kirchhoff

plate theory, the displacement components of the plate along the x -, y - 

and z -axes can be expressed as 

𝑢 𝑥 = 𝑢 0 − 𝑧 
𝜕𝑤 

𝜕𝑥 
, 𝑢 𝑦 = 𝑣 0 − 𝑧 

𝜕𝑤 

𝜕𝑦 
, 𝑢 𝑧 = 𝑤 ( 𝑥, 𝑦 ) (5) 

where the plate’s deflection w ( x, y ) is dependent on spatial variables 

x and y , and independent of z , and u 0 ( x, y ), v 0 ( x, y ) are the displace- 

ment components along the x, y directions of the midplane, respectively, 

which arise from the membrane force in the xoy -plane. Since the influ- 

ence of axial displacements u 0 ( x, y ), v 0 ( x, y ) at the midplane is very 

small, they could be reasonably neglected in the following analysis. 

Therefore, the strain components in Cartesian coordinates could be de- 

rived from Eq. (5) as follows: 

𝜀 𝑥𝑥 = − 𝑧 
𝜕 2 𝑤 

𝜕𝑥 2 
, 𝜀 𝑦𝑦 = − 𝑧 

𝜕 2 𝑤 

𝜕𝑦 2 
, 𝛾𝑥𝑦 = −2 𝑧 𝜕 

2 𝑤 

𝜕 𝑥𝜕 𝑦 
(6) 

Furthermore, the stress components in the plate can be written below 

[33] : 

𝜎𝑥𝑥 = 

𝐸 

1 − 𝜈2 
( 𝜀 𝑥𝑥 + 𝜈𝜀 𝑦𝑦 ) = − 

𝐸𝑧 

1 − 𝜈2 

( 

𝜕 2 𝑤 

𝜕𝑥 2 
+ 𝜈

𝜕 2 𝑤 

𝜕𝑦 2 

) 

, (7) 

𝜎𝑦𝑦 = 

𝐸 

1 − 𝜈2 
( 𝜀 𝑦𝑦 + 𝜈𝜀 𝑥𝑥 ) = − 

𝐸𝑧 

1 − 𝜈2 

( 

𝜕 2 𝑤 

𝜕𝑦 2 
+ 𝜈

𝜕 2 𝑤 

𝜕𝑥 2 

) 

, (8) 

𝜎𝑥𝑦 = 

𝐸 

2(1 + 𝜈) 
𝜀 𝑥𝑦 = − 

𝐸𝑧 

1 + 𝜈

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
, (9) 

for bulk material and 

𝜎𝑠 ± 
𝑥𝑥 

= 𝜎0 ∓ 

ℎ 

2 

[ 
(2 𝜇𝑠 + 𝜆𝑠 ) 𝜕 

2 𝑤 

𝜕𝑥 2 
+ ( 𝜆𝑠 + 𝜎0 ) 

𝜕 2 𝑤 

𝜕𝑦 2 

] 
(10) 

𝜎𝑠 ± 
𝑦𝑦 

= 𝜎0 ∓ 

ℎ 

2 

[ 
(2 𝜇𝑠 + 𝜆𝑠 ) 𝜕 

2 𝑤 

𝜕𝑦 2 
+ ( 𝜆𝑠 + 𝜎0 ) 

𝜕 2 𝑤 

𝜕𝑥 2 

] 
(11) 

𝜎𝑠 ± 
𝑥𝑦 

= ∓ 

ℎ (2 𝜇𝑠 − 𝜎0 ) 
2 

𝜕 2 𝑤 

𝜕 𝑥𝜕 𝑦 
(12) 

for surface material, where signs + and − denote the upper and lower 

surfaces of a plate, respectively. In the above E and 𝜈 stand for Young’s 

modulus and Poisson’s ratio for bulk material, respectively. 

For static and dynamic analysis of plates, bending moments play a 

crucial role, which arise from bulk and surface parts. In other words, 

the bending moments can be calculated as follows: 

𝑀 𝛼𝛽 = ∫
ℎ ∕2 

− ℎ ∕2 
𝑧𝜎𝛼𝛽𝑑𝑧 + 

ℎ 

2 
( 𝜎+ 
𝛼𝛽

− 𝜎− 
𝛼𝛽
) . (13) 
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