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H I G H L I G H T S

• The stochastic effects of CCHP system design were investigated in investment level.

• Parametric method has given the widest range of probability.

• Monte Carlo method has given the highest mean value.

• Scenario-based is the most appropriate method due to comparisons and contrasts.

• The proposed methods provide a broader point of view to evaluate the CCHP systems.
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A B S T R A C T

CCHP (Combined Cooling, Heat, and Power) systems, by their nature, work under uncertainties during their
economic life. This study aims to use stochastic methods to forecast whether or not a CCHP system with long-
term uncertainties will be feasible. To understand how uncertain parameters that affect profitability unfold over
time, the system was analyzed with four different simulation methods, the results of which were compared: the
parametric method, the Monte Carlo method, the historical trend method, and the scenario-based method. The
parametric method gave the widest range of probabilities for the objective function, which provided an unclear
prediction about the possible results of the projected years. The Monte Carlo method gave the highest mean
value, while the historical trend method gave probabilities in a narrower range. The scenario-based method,
which offered a broader prediction than the historical trend method, can be considered to be the most appro-
priate method to adopt given the comparisons and contrasts it provides. The methods proposed in this study
provide decision-makers with a broader point of view to evaluate the amortization of CCHP systems.

1. Introduction

Nowadays, limited energy sources force the use of energy to be
more efficient and economic. Generally centralized power generation
approaches are characterized by high rates of energy losses due to
waste heat and distribution inefficiencies [1]. Auto-production enables
more efficient energy usage by eliminating losses that stem from the
distribution system of energy plants [2]. Accordingly, CCHP (Combined
Cooling, Heat, and Power) systems are the best-known technology for
efficient energy usage, usually referring to the simultaneous production
of cooling, heating, and power from a single energy source. CCHP
plants are built as decentralized systems and are operated close to
where they are needed. Thus, CCHP systems are considered to be more
efficient, profitable, reliable, and environmentally friendly than con-
ventional generating plants [3,4].

There are many studies of CCHP systems, some of which focus on
optimization in the design and operation stages, while others involve
simulation models or selection approaches and planning solutions, as
discussed below with related references.

As with other energy-conversion systems, CCHP systems should be
designed and operated efficiently to gain the expected advantages,
which is clearly an issue falling under optimization. There are many
studies concerning CCHP optimization [5] and multi-criteria decision-
making methods [6,7]. generally encompassing the steps of design and
operation.

Several studies have used linear programming to optimize CCHP
systems [8,9]. Lozano et al. [10] used a simple linear programming
model to minimize the variable operational cost of a CCHP system.
Similarly, Unal and Ersoz [11], proposed the same model to minimize
the total annual variable operational cost and the maintenance cost of a
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generic CCHP system. The results showed that CCHP systems reduce
total annual costs for all operational cases, with the system driven by a
gas engine having better performance than the one driven by a gas
turbine. Additionally, linear programming was used for the sizing and
operational optimization of CCHP in [12]. In [13], mixed integer linear
programming was used to plan the short-term operation of CCHP sys-
tems. Moreover, several detailed simulation models were proposed in
[14].

Li et al. [15] employed the weighting method and fuzzy optimum
selection theory to evaluate the integrated performance of CCHP sys-
tems using various operational strategies. Cho et al. [16] summarized
the methods used to perform energetic and exergetic analyses, system
optimization, performance improvement studies, and the development
and analysis of CCHP systems. Another review work [4] classified dif-
ferent types of CCHP systems based on the prime mover, size, and en-
ergy sequence usage, suggesting a general approach to select the ap-
propriate CCHP system depending on specific needs. As in CCHP
systems, Carpaneto and Chicco [17] specified the models and analyses
to select the best CHP planning solution in the presence of uncertainties
on a long-term timescale. Their study illustrated and discussed various
technological alternatives operated under different control strategies.

The control strategy of a system plays a crucial role in optimization.
As in CHP systems, CCHP systems can be operated under one of the
following control strategies: on-off operation, FEL (following electricity
load), and FTL (following heat load) [1,18]. With respect to these
control strategies, [19] demonstrated that different seasonal load con-
ditions and energy prices result in a reduction in total daily cost from
8% to around 100% in total daily cost. Apart from control strategies,
component optimization is also important in overall optimization;
however, the optimization of the whole system is a better solution than
optimizing only the components [20].

Apart from the deterministic optimization method adopted in the
studies mentioned above, stochastic optimization has also been per-
formed. For example, [21] proposed a stochastic, multi-objective model
to optimize CCHP operation strategy. Gomez-Villalva and Ramos [22]
presented multi-objective stochastic optimization models to manage the
energy of industrial consumers in liberalized energy markets. To ana-
lyze the risk that stems from energy price uncertainty, they developed a
two-stage stochastic program by improving a deterministic optimiza-
tion model.

In another example of stochastic optimization, Wang [23] proposed
an improved multi-objective particle swarm optimization algorithm,
which turned out to be effective in dealing with the CHP dispatch
problem. Alipour et al. [24] also worked to solve a scheduling problem
of CHP systems experienced by an industrial customer using a sto-
chastic programming framework, where an auto-regressive, integrated
moving-average technique was used to generate scenarios for electricity
price and customer demand. Zhou et al. [25] proposed a two-stage
stochastic programming model for the optimal design of distributed
energy systems. To solve the optimization problem, they decomposed a
two-stage strategy: a genetic algorithm conducted the first-stage search,
while the Monte Carlo method handled uncertainty in the second stage.

A probabilistic model was proposed by Zamani et al. [26] for the
optimal electrical/thermal scheduling of a virtual power plant to par-
ticipate in both energy and spinning reserve markets. In that work, a
simultaneous energy and reserve scheduling method was presented in
light of demand-response programs. Meanwhile, Smith et al. [27]
analyzed a CCHP system model under different operating strategies in
terms of input and uncertainty. They revealed the significance of con-
ducting uncertainty and sensitivity analyses in predicting CCHP system
performance through a case study of a small office building. The un-
certainties in the model predictions of primary energy consumption,

Nomenclature

Symbols

α shape factor
β shape factor
△ change in variable
δsmc specific maintenance cost per hour [USD]
ηab auxiliary boiler efficiency
ηhrs heat recovery system efficiency
ηpgu PGU efficiency
μ average
σ standard deviation
θ occurrence probability
a regression constant
awh annual working hours of the plant
b slope of regression
Cgc specific gas consumption of PGU
COPac coefficient of performance of AC
COPmc coefficient of performance of MC
Ed electricity demand [kW]
Er electricity power needs of MC
Eac electricity power needs of AC
Icchp investment cost of CCHP [USD]
J number of simulation
n years
OCCCHP operational cost of CCHP system
OCSP operational cost of separate production
Pep electricity price [USD/kWh]
Pfa AB fuel price
Pfc natural Gas price [USD/m3]
Qc heating power of PGU [kWh]

Qd heating demand [kW]
QI waste heat
Qr driving heat for absorption system [kWh]
Qab heat generated by AB
Rd cooling demand [kW]
Re cooling capacity of mechanical chiller [kWh]
Rq cooling capacity of absorption chiller [kWh]
tas total annual saving
tns total number of scenario
Wpgu generated electricity by PGU

Abbreviations

AB Auxiliary Boiler
AC Absorption Chiller
CCHP Combined Cooling Heat and Power
CHP Combined Heat and Power
ED Energy Demand
EP Energy Price
HRS Heat Recovery System
HTM Historical Trend Method
LCV Lower Calorific Value
MC Mechanical Chiller
MCM Monte Carlo Method
NGC Natural Gas Consumption
PDF Probability Density Function
PGU Power Generation Unit
PM Parametric Method
PP Payback Period
SM Scenario-based Method
SP Separate Production
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