
Journal of Systems Architecture 91 (2018) 1–10 

Contents lists available at ScienceDirect 

Journal of Systems Architecture 

journal homepage: www.elsevier.com/locate/sysarc 

Run-time mapping algorithm for dynamic workloads using association rule 

mining 

Sima Sinaei, Omid Fatemi ∗ 

Electerical and Computer Engineering Department, University of Tehran, Tehran, Iran 

a b s t r a c t 

Task mapping exploration plays an important role in the high performance achieved by heterogeneous multi-processor system-on-chip (MPSoC) platforms. The 

dynamic of application workloads in modern MPSoC-based embedded systems are consistently growing. Nowadays, the execution of different applications is done 

concurrently, and these applications compete for resources in such systems. To cope with the dynamism of application workloads at runtime and improve the 

efficiency of the underlying system architecture, this paper presents a hybrid task mapping algorithm for multimedia applications. That consists of two phases: 

design-time and run-time. During design-time, static mapping exploration is performed, and the applications are clustered based on their efficient mapping, then 

a set of rules for mapping is extracted by Association Rule Mining techniques. During run-time, when a new application enters to the system, this application is 

classified to one of the existing clusters using the rule sets extracted at design-time phase. The objective of application mapping is to minimize execution time in a 

predefined budget of energy consumption. A heterogeneous MPSoC system is used to evaluate the proposed algorithm. The experimental results revealed that during 

run-time by using the proposed algorithm, suitable resources regarding energy consumption and execution time are selected for mapping. 

1. Introduction 

Modern embedded systems rely more and more on Multiprocessor 

System on Chip (MPSoC) architectures and often have to support an 

increasing number of applications and standards [1] . Typically, the tar- 

get MPSoC architecture platforms are heterogeneous in nature because 

these systems are capable of providing better performance and energy 

tradeoffs than their homogeneous counterparts. In these systems, mul- 

tiple applications can run concurrently and therefore these applications 

have to contend for system resources. It makes the role of efficiant task 

mapping more critical in order for the applications’ diverse demands on 

the MPSoC architecture to be met. The task mapping criteria is opti- 

mization of energy consumption, computation performance, etc. [2–5] . 

Mapping of application tasks on MPSoC platform resources can be 

realized at either design-time (static) or run-time (dynamic) [6] . Design- 

time mapping techniques use a predefined set of applications with 

known computation and communication behaviors and a static plat- 

form. Therefore, they are not suitable for dynamic workloads in which 

new applications may appear (i.e., start their execution) on the platform 

at run-time and cause the number of running application competing for 

the available platform resources to vary over time. Thus, run-time (dy- 

namic) mapping techniques are required for scenarios where application 

tasks need to be loaded into the platform at run-time. 

The run-time mapping can be done either with or without previously 

analyzed results. Numerous studies have been carried out on mapping 

without previously analyzed results, i.e. on-the-fly processing [7–12] . 

In these methods, assignment of newly arriving tasks on the system re- 

∗ Corresponding author. 

E-mail address: omid@fatemi.net (O. Fatemi). 

sources is done by means of heuristics. The fact that these approaches 

must be light-weight in terms of processing power (as they are per- 

formed at run-time) may lead to lower quality mappings. A probable so- 

lution is transferring the compute intensive analysis to the design phase 

[13–20] . The methods that implement these solutions are called hybrid 

methods. Here, analyzed results that have been obtained at design-time 

can be used at run-time to accelerate efficient run-time mapping. Hy- 

brid mapping approaches also facilitate a light-weight run-time man- 

ager, which is required in modern embedded systems (e.g., smart phones 

and tablets). 

In this paper, a novel hybrid run-time mapping technique for multi- 

media MPSoC-based embedded systems is proposed. The proposed map- 

ping technique minimizes workload execution time when a predefined 

budget of energy consumption is allotted. This technique facilitates the 

handling of new incoming applications not known at design-time. At 

design-time, a Design Space Exploration (DSE) algorithm is used to se- 

lect the efficient mapping. As will be explained, this exploration is used 

to cluster applications. By using this supervised data set via Rule Asso- 

ciation Mining, the best mapping rule set is selected. At run-time, when 

a new and possibly unknown application enters the system, a quick de- 

cision about resource selection and mapping has to be made. There isn’t 

sufficient time to explore all or even a small fraction of the mapping 

possibilities. 

A method based on Association Rule Mining (ARM) is proposed to 

solve the mapping problem. It will take considerably less time if ARM, 

a machine learning technique, is used to determine the resource de- 

mands of the incoming application. This is possible by clustering a set 

of predefined applications at design-time based on effective features. 

https://doi.org/10.1016/j.sysarc.2018.09.005 

Received 5 May 2018; Received in revised form 16 September 2018; Accepted 21 September 2018 

Available online 22 September 2018 

1383-7621/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sysarc.2018.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2018.09.005&domain=pdf
mailto:omid@fatemi.net
https://doi.org/10.1016/j.sysarc.2018.09.005


S. Sinaei, O. Fatemi Journal of Systems Architecture 91 (2018) 1–10 

Fig. 1. Clustering at design-time and classification at run-time. 

Each cluster is labeled based on the resource demands of the applica- 

tions belonging to it. A new application is classified into one of the ex- 

isting clusters by quick profiling of the new application, determination 

of its features, and using the mapping rule set in the system database. 

Subsequently, the label specified for that cluster will be used as the new 

application’s resource demand. These steps are illustrated in Fig. 1 in 

which the contents are arranged in a two-dimensional space, and each 

point represents one of the applications in the features space. 

The design space exploration method is used to determine efficient 

resource demands of each application in order to place them into clus- 

ters. In Fig. 1 , application clusters are shown by the circles and the re- 

source demands of each cluster are indicated by the squares. At run- 

time, application mapping can be quickly determined as indicated by 

the red arrow based on the effective features. The remainder of this pa- 

per is organized as follows: In Section 2 , the related work is described. 

Section 3 describes prerequisites and defines the problem. Details of the 

proposed algorithms are presented in Section 4 . The experimental re- 

sults are presented in Section 5 , after which Section 6 concludes the 

paper. 

2. Related work 

The design-time techniques for application mapping were used fre- 

quently in the last decade when the application workloads were less 

complicated and had static behavior. The efficient mapping of these ap- 

plications was configured at design-time. As the technology progressed, 

the nature of application workloads became more complicated and dy- 

namism became an inherent part of these workloads. The design-time 

techniques were not suitable for run-time varying workloads as the num- 

ber of running application and their entrance time were not known be- 

forehand. These workloads required re-mapping/run-time mapping of 

applications (e.g. networking and multimedia applications). Run-time 

mapping can be categorized into on-the-fly mapping and mapping us- 

ing design-time DSE results. The latter is also called the hybrid method. 

In on-the-fly mapping techniques [7–12] any changes or the entry of 

new application triggers the start of the decision making process. This 

process usually uses heuristic and greedy algorithms. These algorithms 

are improved by aiming to optimize specified performance metrics such 

as application execution time and power consumption. As these map- 

ping techniques have to make decisions online as quickly as possible, 

the performance quality is often sacrificed; which leads to inadequate 

mapping. 

Hybrid mapping implements the results of design-time mapping to 

find the starting point in distinguishing task properties and then opti- 

mize run-time decisions based on them. Hybrid mapping transfers the 

time intensive tasks to design-time and therefore can make decisions 

more accurately and in less time at run-time [13–20] . However, most 

of these approaches cannot adapt to application dynamism and handle 

newly incoming applications that were not known during design-time. 

In this paper, a novel hybrid algorithm for run-time mapping is pro- 

posed, which is capable of handling newly incoming applications by 

using a machine learning technique. The problem definition will be ex- 

plained in the next section. 

3. Problem definition 

Application mapping is usually done at system-level design as low- 

level design requires too much time for evaluating several feasible map- 

ping options. The inputs of system level mapping are typically the be- 

havior of the application, architectural characteristics, and the various 

relations between them. To better explain the application mapping prob- 

lem, it is necessary to first identify the application model, the architec- 

ture model, and the mapping between them as prerequisites. 

3.1. Application model 

In this paper, we target the multimedia application domain. For this 

reason, the Kahn Process Network (KPN) model of computation [21] is 

used to specify application behavior as it fits well to the streaming 

behavior of multimedia applications. In a KPN, an application is de- 

scribed as a network of concurrent processes that are interconnected 

via FIFO channels. An application can be represented as a directed graph 

KPN = (P, F) where P is set of processes (tasks) p i in the application and 

f ij 𝜖 F represents the FIFO channel between two processes pi and pj .In 

Fig. 2 , the KPN of a Motion-JPEG (MJPEG) application is shown as an 

example. 

3.2. Architecture model 

An architecture model is specified by the set of architectural ele- 

ments and the connections that link those elements. In this model, the 

set of architectural elements comprises two distinct sets: the set of pro- 

cessing elements P and the set of memory elements M . An architecture 

can be modeled as a graph MPSoC = (PE, C), where PE is the set of pro- 

cessing elements used in the architecture and C is a multiset of pairs 

2 



Download English Version:

https://daneshyari.com/en/article/11021081

Download Persian Version:

https://daneshyari.com/article/11021081

Daneshyari.com

https://daneshyari.com/en/article/11021081
https://daneshyari.com/article/11021081
https://daneshyari.com

