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a  b  s  t  r  a  c  t

Several  computational  models  of Vein  Graft  Bypass  (VGB)  adaptation  have  been  developed  in order  to
improve  the  surgical  outcome  and  they all  share  a common  property:  their  accuracy  relies  on  a winning
choice  of their  driving  coefficients  which  are  best  to be  retrieved  from  experimental  data.

Since  experiments  are time-consuming  and resources-demanding,  the  golden  standard  is to know  in
advance  which  measures  need  to be retrieved  on  the  experimental  table  and  out  of  how  many  samples.
Accordingly,  our  goal  is to build  a computational  framework  able  to pre-design  an  effective  experimental
structure  to  optimize  the computational  models  setup.

Our  hypothesis  is  that  an  Agent-Based  Model  (ABM)  developed  by our group is  comparable  enough  to
a  true  set  of  experiments  to  be used  to generate  reliable  virtual  experimental  data.

Thanks  to  a twofold  usage  of our  ABM,  we created  a filter  to be  posed  before  the  real  experiment  in
order  to  drive  its  optimal  design.

This  work  is  the  natural  continuation  of  a  previous  study  from  our  group  [1], where  the  attention
was  posed  on  simple  single-cellular  events  models.  With  this  new  version  we  focused  on more  complex
models  with  the  purpose  of  verifying  that the complexity  of  the  experimental  setup  grows  proportionally
with  the  accuracy  of the  model  itself.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Peripheral Arterial Diseases (PADs) are the leading cause of mor-
bidity in the Western Society with a 13% people over 50 years
old affected [2]. Among the various surgical techniques aimed to
restore the physiological circulation, the most performed one con-
sists into bypassing the occlusion by using an autologous saphenous
vein graft, a procedure known as Vein Graft Bypass (VGB) [3–5].

Despite years of surgical improvements, the rate of VGBs failure
on a medium term follow-up remains unsatisfactorily high, with an
18% of grafts failing within just 2 months from the original oper-
ation, a percentage that ramps up to 40% on a longer follow-up
[6,7].

The failure of VGBs is mainly identifiable with the re-occlusion
of the graft and it is attributable to its adverse adaptation to the
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new environmental conditions [8–11]. By switching from venous
to arterial regime, the graft simultaneously faces two phenomena,
which balance determines the success or the failure of the pro-
cedure: i) Intimal Hyperplasia (IH) and ii) Wall Remodeling (WR)
consisting in the thickening of the innermost and outermost layer
of the graft respectively.

Our group of investigators, also along with others [12,13],
studied vascular adaptation both on an experimental [11] and
on a computational perspective, from deterministic differential
equation systems [14] to Multi-Scale Models (MSMs) [15] to
Agent-Based Models (ABMs) [16] regulated by cellular automata
principles based on Monte Carlo simulations.

Their driving coefficients were retrieved directly from rabbit-
based experimental data, a detailed description of which is offered
in [9,11,17]. In the process it has been observed that the level of
detail carried by the experimental measures drives the resources
needed for their retrieval. Simple geometrical measures, e.g. com-
partments’ radii or thicknesses, can be easily evaluated within a
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Fig. 1. Agent-Based Model. The ABM (right panel) replicates clinical evidences of a 6 months VGBs follow-up (left panel) [16].

week, while more complex measures like cellular density maps can
require a year of work.

As experiments are consuming in terms of time and resources,
the golden standard is to know in advance how to design the best
experimental setup in order to retrieve the desired coefficients’
value. Accordingly, the goal of this paper is to build a computational
framework able to pre-identify which are the measurements and
which is the size of the specimen suitable enough to explore the
experimental observations in a way that allows to effectively setup
a computational model of vascular adaptation.

Our hypothesis is that the ABM previously introduced [16] is
comparable to a real experiment in a manner that it can be used to
generate virtual experimental data. Indeed, on one end the model
is relatively accurate in a given coefficients’ domain, so much to
mimic  the fundamental biological functions of the VGB’s adaptation
with high credibility, an example of which is shown in Fig. 1. On the
other end, seen its stochastic nature, the ABM shares the same level
of noise of a true experiment.

The rationale of this work stands on the fact that if an exper-
imental setup is not proved to be effective computationally, then
there is no point to test it on a real experimental table, because it
will certainly result in a failure. This is why the current work wants
to be a filter to be placed before the real experiment in order to
drive its optimal design.

Accordingly, the computational framework presented is based
on a twofold usage of our ABM. The model is used on one end
to generate virtual experimental data and on the other end as a
true computational model and the two resulting outputs are com-
pared in order to solve the inverse problem established between
them. The solution of the latter depends on the winning choice of
the measure to be monitored as output of the models, that repre-
sent the experimental measure, and on the number of independent
simulations, that in turn represents the size of the experimental
specimen.

In the previous work from our group of investigators [1], we
demonstrated how a simple one-coefficient implementation of the
ABM requires an experimental setup relatively easy to prepare and

not particularly resources demanding. In addition, the robustness
of the experimental setup can be improved by simply using a larger
number of samples. However, this has been proved false for multi-
coefficients models. The un-verified hypothesis we  left behind was
that more complex models also require more informative measure-
ments, generally complex and time-demanding to retrieve.

The current work wants to offer a more complete analysis
by solidifying the previous evidences and by verifying the cited
hypothesis. Accordingly we challenged the presented framework
with an increasing degree of complexity of the ABM, by studying
first singular cellular events, i.e. intimal/medial mitosis in order
to replicate IH and WR respectively, and then by coupling them
in order to verify that indeed the complexity of the experimental
measurements and/or the size of the specimen grow proportionally
with the complexity of the ABM.

Finally, the robustness of our basic assumption relates on an
accurate setup of the coefficients driving the ABM and especially
on an effective choice of their range of perturbation, as fluctuations
of the ABM can lead to large output variations that would be hard to
catch with this method. Both the required features are guaranteed
by an accurate study of the experimental data [11] preceding the
model’s implementation and by a thorough validation of the ABM
on them in order not to run into unrealistic states potentially given
by the model. This is a standard procedure adopted in the devel-
opment of a computational model and it has been followed in the
previous work by our group [16] the basic structure of the ABM is
taken from.

2. Methods

Fig. 2 shows the backbone of the computational framework pro-
posed that will be common for all the virtual experiments that will
be described. The methodology presented is based on a twofold
usage of our ABM [16] that, depending on its implementation, acts
both as virtual experimental dataset generator, labeled as ABM1,
and as a true computational model, labeled as ABM2.
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