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A B S T R A C T

A simple implicit dynamic analysis method is extended to simulate the seismic-induced collapse of bridges.
Nonlinear and discontinuous behaviors, such as material yielding and cracking, member damage, separation,
falling and collision with other members, are considered in the analysis. An impact model with a contact de-
tection scheme is developed to consider the impact response between beam elements representing bridge su-
perstructures. Multiple-support excitation is considered. The Matsurube Bridge which collapsed in the 2008
Japan Iwate-Miyagi inland earthquake due to not only strong ground excitations but also the sliding of the rock
mass beneath the bridge is analyzed for verifying the effectiveness of the analysis method. By reproducing the in-
situ collapse situation, the failure mechanisms of the bridge are estimated. The results demonstrate that the
simple implicit dynamic analysis is robust in simulating the collapse of bridges that exhibit highly nonlinear and
discontinuous behaviors under extreme earthquakes.

1. Introduction

A large number of bridges have suffered severe damage or even
collapsed in past earthquakes. Accordingly, it is paramount to estimate
the failure causes and mechanisms so that bridge seismic designs can be
modified to avoid similar damage in future earthquakes. With sig-
nificant advances in computational facilities, the number of numerical
studies on structural collapse or damage has gradually increased over
the last two decades [1–9]. Structural collapse is a highly nonlinear and
discontinuous dynamic process that involves material yielding and
cracking, member damage, separation, falling, and collision with other
members, making numerical simulations complex. Since employing
conventional implicit dynamic finite element (FE) analysis to simulate
the failure mechanisms and collapse of structures is challenging, re-
search on structural collapse frequently adopts explicit dynamic FE
analysis, using software such as the LS-DYNA, ABAQUS-Explicit, and
OpenSees [10]. In addition to the FE method, the distinct element
method and applied element method have demonstrated advantages in
simulating the discontinuous behavior among members during collapse
[6–8]. In particular, the distinct element method in conjunction with
the explicit central difference integration scheme (CDIS) has been fre-
quently employed to analyze the discontinuous behaviors of granular
materials, such as soil and rock, due to its computational efficiency
[11–13]. However, explicit integration methods are conditionally

stable. When analyzing a large complicated system with a high-fre-
quency response, very small time steps are required to ensure numerical
stability and obtain an accurate solution because iterations are not
conducted to rigorously satisfy the equilibrium equations within ex-
plicit integrations. Additionally, damping is inherent in a dynamic
system. Once stiffness-proportional damping is taken into account to
simulate more realistic structural behavior, the equation decoupling
and computational efficiency of explicit CDIS are lost. Furthermore,
since CDIS is a multi-step integration method, strictly speaking, it
cannot be employed to simulate discontinuous responses. Generally, a
typical bridge consists of superstructures, substructures, and appurte-
nances, and compared to a building, usually comprises more types of
components with various mechanical properties [14]. In order to rea-
listically simulate the collapse process of bridges, the requirements of
the detailed numerical model are very high, which makes numerical
procedures complicated and time-consuming. Consequently, a simple,
robust, and efficient dynamic analysis method is needed to simulate
structures, especially large-scale complicated structures, with highly
nonlinear and discontinuous responses under extreme earthquakes.

A simple implicit dynamic analysis method with decoupled equili-
brium equations was proposed by Lee et al. based on the concept of
equivalent nodal secant stiffness and damping coefficients [15,16]. This
method combines the advantages of both conventional implicit and
explicit integration methods while avoiding their drawbacks. In the
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present study, this simple implicit dynamic analysis method is extended
to simulate the seismic-induced progressive collapse of a bridge. In the
simulation of nonlinear structures subjected to multiple-support ex-
citation (MSE), the equations of motion (EOMs) are formulated in the
absolute coordinates [17–20]. In addition, the pounding between
structural components is considered in the analysis. An impact model
with a contact detection scheme is developed to consider the response
to impact between beam elements representing bridge superstructures.
Finally, the simple implicit dynamic analysis method is applied to the
Matsurube Bridge, which collapsed in the 2008 Japan Iwate-Miyagi
inland earthquake due to not only strong ground excitations but also
the sliding of the rock underneath the bridge [21–23] to verify its ef-
fectiveness and robustness.

2. Dynamic analysis

2.1. Simple implicit dynamic analysis with decoupled equations

A simple implicit dynamic analysis with decoupled equations was
used to simulate the collapse of structures under extreme earthquakes
[15,16]. In dynamic analysis, basic discrete equilibrium equations
based on the principle of virtual displacements for a structure can be
established at time t as:
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where t tF F( ), ( ),I D and tF ( )S are the vectors of the equivalent fictitious
inertial nodal forces, the equivalent damping nodal forces, and the in-
ternal element nodal forces equivalent to the element stresses, respec-
tively, and tR( ) is a vector of the equivalent externally applied nodal
loads.

Assuming that the mass is time-invariant and that Rayleigh damping
with constant coefficients is used for a geometrically and/or materially
nonlinear structure system, Eq. (1) can be rewritten to satisfy the dy-
namic equilibrium equations at the time instant +t tΔ using implicit
direct integration methods as:
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where KI is the initial structure stiffness matrix.
When the mass matrix is constructed diagonally using lumped-mass

idealization, the dynamic equilibrium equations of Eq. (2) are de-
coupled. Furthermore, when implementing an incremental-iterative
analysis, the equation at degree of freedom (DOF) i in iteration r can be
expressed as:
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where UΔ i̇
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r( ) are the velocity and displacement increments,
respectively, and n is the number of DOFs in the structural system. In
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cant damping and stiffness coefficients, respectively, at DOF i in itera-
tion −r( 1); they are defined as:
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rΔ ( 1) and + −FΔ ( )t t
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rΔ ( 1) are the stiffness-proportional
damping force increment and internal element nodal force increment,
respectively.

The implicit Newmark integration family is frequently employed in
practical analyses due to its effectiveness [24]. Since the constant
average acceleration scheme is unconditionally stable, it was employed

in this study. The assumed variations of acceleration and velocity for
DOF i within each time interval tΔ are represented as [10]:
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where =β 1/4 and =γ 1/2. Substituting Eqs. (6) and (7) into Eq. (3),
and then rearranging the terms yields an equivalent static equation:
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unbalanced force at DOF i, time instant +t tΔ , and iteration r . These
terms are expressed as:
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As can be seen in Eqs. (8)–(10), assembling the structure stiffness
and damping matrices is not required in the simple implicit dynamic
analysis. Without the factorization of an effective matrix, the compu-
tation efficiency is greatly superior to that of conventional implicit
methods. In addition, the time step used in the simple method is larger
than that used in CDIS, especially for dealing with a hysteresis response.
The computation efficiency and stability of the simple implicit dynamic
analysis method have been previously demonstrated via the analyses of
several examples [15]. Details of this method can be found elsewhere
[15,16]. Since internal element nodal forces and damping forces are
evaluated at the element level, any kind of FE can be easily in-
corporated into this dynamic analysis as long as its internal resisting
and damping forces can be precisely evaluated.

A typical bridge comprises superstructures, substructures, bearing
systems, and appurtenances. During progressive collapse, some critical
portions in structures and appurtenances may exhibit highly nonlinear
and discontinuous behaviors. Note that the objective of this study was
to verify the effectiveness and robustness of the simple implicit dynamic
analysis method in simulating the progressive collapse of bridges.
Therefore, two-dimensional numerical models were constructed to
simplify the analysis and focus on the collapse mechanism. Link and
support elements were herein employed to simulate materially non-
linear and discontinuous responses, including material hysteresis, rup-
tures of members, Coulomb friction damping, pounding between
structural components, and soil-structure interactions. Similar to a
beam element, a link element connects two nodes, and a support ele-
ment connects one node to the ground. Referring to the definitions of
link/support elements in the well-known structural software SAP2000
[25], it was assumed that a link or a support element is composed of
three independent springs, namely axial, lateral, and rotational springs.

2.2. Multiple-support excitation

Multiple-support excitation (MSE) is generally taken into account in
analyzing large, spatially distributed structures, such as long-span
bridges, buildings, and pipelines [17–20]. As done in the nonlinear
dynamic simulation of structures with uniform base excitation, the
EOMs with MSE were formulated in the absolute coordinates, including
the support/ground DOFs, i.e., the bases of piers and abutments [10].
With lumped-mass idealization, the EOMs for all structural DOFs can be
written as follows:
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