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A B S T R A C T

In the design process of a cable-strut structure, the desired shape is first defined and the prestress can be obtained
if the geometry is feasible; otherwise, the geometry must be modified. Thus, the initial step for prestress cal-
culation is to estimate the feasibility of the geometry. In this paper, a method called Unbalanced Force Iteration
(UFI) is proposed to remove the unbalanced forces using the equilibrium and stiffness equations. Feasibility of
the geometry can be judged by the convergence property of UFI. Self-stress modes can be directly obtained easily
through UFI method, if initial geometry is feasible. For structures with infeasible initial geometry, the Step-by-
Step UFI, which combines finite element analysis and UFI, is proposed to gradually move the nodes to feasible
locations. Three examples of cable domes with feasible geometry and three examples of cable domes with ir-
regular and infeasible initial geometry are presented to verify the ability of UFI and Step-by-Step UFI for de-
signing new irregular and asymmetric cable-strut structures.

1. Introduction

Cable-strut structure is a lightweight roof structure covering a large
space in the field of civil and architectural engineering. It consists of
cables and struts that are stiffened by introducing pretensioning forces
in a self-equilibrium state. Therefore, the mechanical properties of a
cable-strut structure are similar to those of a tensegrity structure [1,2].
Over the past 60 years, numerous studies have been conducted for
analysis and design of tensegrity structures [3,4]. However, a cable-
strut structure does not obey the rigorous definition of a tensegrity
structure, because a tensegrity structure should be self-standing without
support, which is not acceptable for a roof structure.

A long-span cable-strut structure called cable dome was first applied
by Geiger in the two Gymnasiums of Seoul Olympics [5]. The structural
configuration was then called ‘Geiger form’. Levy adopted another form
of cable dome consisting of triangle units in the main Gymnasium of
Atlanta Olympics (Georgia Dome) [6], which was the largest cable
dome up to now. Being a lightweight solution makes it a popular
structural system in the design of large span roofs. In the recent three
decades more than ten large cable domes have been constructed, in-
cluding famous works such as the Suncoast Dome, Redbird Arena,

Taoyuan County Arena, La Plata Stadium, The Crown Coliseum, etc.
[7–12], and many new forms have been proposed and studied [13–18].
However, the majority of existing cable dome projects are in symmetric
circular form.

Determination of prestress is the key step in design of cable-strut
structures [7], because the stability and stiffness against external loads
depend on prestress distribution. Furthermore, feasible prestress, or
feasible self-stress mode, is defined as a set of member forces satisfying
the self-equilibrium conditions and the structural requirement such that
cables are in tension and struts are in compression [19]. If feasible
prestress is able to be obtained, we regard that the geometry is feasible.
The process for determination of prestress with given geometry and
topology is known as prestress design, while the process of obtaining
feasible geometry with topological and structural demands is referred to
as form-finding [20].

Various methods have been presented for finding feasible pres-
tresses or self-stress modes, e.g., by Zhang et al. [21], Pellegrino [19],
Yuan et al. [14], Wang et al. [22], Tran et al. [23], Guo and Jiang [24],
Ye et al. [25]. Number of self-stress modes can be easily obtained from
the rank of equilibrium matrix [21], which can be computed by Sin-
gular Value Decomposition (SVD). If there is only one self-stress mode,
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feasibility of the geometry can easily checked. If the initial geometry is
not feasible, the form-finding process is needed. Many methods have
also been proposed for the form-finding problem. Among them, Dy-
namic Relaxation Method (DRM) [25] and Force Density Method (FDM)
[26] are very efficient methods to find the geometry when the un-
stressed member length or force density is known. For form-finding
problems with geometrical and structural constraints, many non-linear
or numerical methods have been presented based on FDM/DRM
[27–31] or Finite Element Method [23,32–34].

In many projects, the initial surface shape or even geometry have
been assigned according to architectural preference and requirement
before the structural design starts. Thus, the problems encountered in
the practical design process of asymmetric or irregular cable domes are
(1) a more efficient and direct way for estimation of feasibility of the
given initial geometry is needed; (2) when the initial geometry is in-
feasible, a simple form-finding method is needed for structural de-
signers to find the feasible geometry closest to the initial one.

In this paper, a method called Unbalanced Force Iteration (UFI) is
first proposed. The geometrical feasibility can be estimated by the
convergence property of UFI. This method is conducted by a simple
iteration with equilibrium matrix and linear stiffness matrix only,
which are available in any structural analysis software. Self-stress
modes and the static indeterminacy, which is equal to the number of
independent self-stress modes, can be obtained in a simple manner, if
geometry is feasible. This process avoids conducting singular value
decomposition of equilibrium matrix to obtain its rank, which is diffi-
cult for a structural engineer. When initial geometry is infeasible, the
Step-by-Step UFI, which combines UFI and Finite Element Analysis
(FEA), is proposed to gradually move the nodes to feasible locations.
Feasible geometry that is close to keeps the initial surface shape and
close to the given coordinates can be found. The efficiency of the pro-
posed methods is demonstrated in numerical examples of cable-strut
structures with various symmetric and asymmetric shapes. Evaluation
of feasibility, obtainment of self-stress modes and form finding can be
integrated together. The whole method is also more intuitive and easier
for engineers to master and apply in designing process of real projects.

2. Basic formulations

Basic formulations of equilibrium equations and stiffness matrices
are presented for prestress design and form-finding analysis of cable-
strut structures.

2.1. Equilibrium equation

Letm and n denote the numbers of elements and nodes, respectively.
Connectivity of the structure can be defined by the connectivity matrix

×C Rn m. If the kth element starts at node i and ends at node j, the
k e( , ) component Ck e, of matrix C is defined as:

=
+ =

=C
e i
e j

1 ( )
1 ( )
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k e,

(1)

Let x, y and z ×R( )n 1 denote the coordinate vectors of nodes in x-,
y- and z-directions, respectively. The vectors of coordinate differences
in x-, y- and z-directions of the two end nodes of members are denoted
by = …u u u( , , )m1

T, = …v v v( , , )m1
T and = …w w w( , , )m1

T, respectively,
which are calculated by
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The coordinate difference matrices U, V andW ×R( )m m are defined
as

=
=
=
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Let = …l l l( , , )m1
T denote the vector consisting of length of each

element including cables and struts. The kth component lk is computed
as

= + +l u v wk k k k
2 2 2 (4)

The element length matrix L is defined as

=L l diag( ) (5)

Then the equilibrium matrix ×D R n m0 3 including the support de-
gree of freedom is obtained as

=D
C UL
C VL
C WL

[ ]0
T 1

T 1

T 1 (6)

Let f denote the number of degrees of freedom of the structure.
Equilibrium matrix D0 is reduced to ×D Rf m after removing the rows
corresponding to the fixed displacement components. Self-equilibrium
conditions of the cable-strut structure is formulated with respect to the
vector ×t Rm 1 consisting of prestress of each element as

=Dt 0 (7)

2.2. Linear stiffness matrix

The linear elastic properties of pretensioned cable-strut structures
are the same as those of trusses, when cables are appropriately ten-
sioned. Therefore, we derive the linear stiffness matrix of trusses below.
Let ×k Re

m 1 denote the element stiffness vector. The kth component
ke

k can be calculated by

=k EA
le

k k

k (8)

where E is Young’s modulus and Ak is the cross-sectional area of the kth
element. A diagonal matrix ×K Re

m m of element stiffness is defined as

=K kdiag( )e e (9)

Let ×d Rf 1 denote the nodal displacement vector of the structure
subjected to the external load vector ×F Rf 1. Elongation vector

×l Rm 1 of members is calculated by

=l Bd (10)

where ×B Rm n3 is the compatibility matrix, which is the transpose of
the equilibrium matrix D as

=B DT (11)

Then, the global linear stiffness matrix ×K RE
f f after removing the

support degrees of freedom is obtained as

=K DK DE e
T (12)

The nodal displacement vector d under nodal loads F can be ob-
tained from the following equation:

=K d FE (13)

The resulting internal force can be calculated by

= =t l k K l K D d=e e e
T (14)

with ( ) denoting Hadamard product [35], or element-wise product, of
two vectors or matrices.
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