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A B S T R A C T

In this paper, a higher order beam theory is employed for linear local buckling analysis of beams of homo-
geneous cross-section, taking into account warping and distortional phenomena due to axial, shear, flexural, and
torsional behavior. The beam is subjected to arbitrary concentrated or distributed loading, while its edges are
restrained by the most general linear boundary conditions. The analysis consists of two stages. In the first stage,
where the Boundary Element Method is employed, a cross-sectional analysis is performed based on the so-called
sequential equilibrium scheme establishing the possible in-plane (distortion) and out-of-plane (warping) de-
formation patterns of the cross-section. In the second stage, where the Finite Element Method is employed, the
extracted deformation patterns are included in the buckling analysis multiplied by respective independent
parameters expressing their contribution to the beam deformation. The four rigid body displacements of the
cross-section together with the aforementioned independent parameters constitute the degrees of freedom of the
beam. The finite element equations are formulated with respect to the displacements and the independent
warping and distortional parameters. The buckling load is calculated and is compared with beam and 3d solid
finite elements analysis results in order to validate the method and demonstrate its efficiency and accuracy.

1. Introduction

In most cases, in the analysis of beam-like structures, Euler –
Bernoulli beam theory assumptions are adopted, while in the case of
non-negligible shear deformation effect these assumptions are relaxed
by using Timoshenko beam theory. However, both theories maintain
the assumption that cross-section behaves as a rigid body. In order to
take into account shear lag effects in the context of a beam theory, the
inclusion of non-uniform warping is necessary, relaxing the assumption
of plane cross-section. The shear flow associated with non-uniform
warping leads also to in-plane deformation of the cross-section, relaxing
the assumption that the cross-section shape does not change after de-
formation. For this purpose, the so-called higher order beam theories
have been developed taking into account shear lag [1,2] and distor-
tional (in-plane deformation) effects [3,4]. Higher order beam theories
are of increased interest due to their important advantages over ap-
proaches such as 3-D solid or shell solutions as they:

(a) require less modelling time,
(b) permit isolation of structural phenomena and results interpretation

(rotations, warping parameters, stress resultants etc. are also eval-
uated in addition to displacements and stress components),

(c) facilitate modelling of supports and application of external loading,
(d) require significantly less number of degrees of freedom (dofs) re-

ducing computational time, and
(e) facilitate parametric analyses without the construction of multiple

models.

Elastic stability of beams is one of the most important criteria in the
design of structures. Chen et al. [5] were the first that included a simple
analytical model in their beam formulation to account for the effects of
local buckling of circular cross-section. Since then, numerous research
efforts have been published concerning buckling including shear lag
and distortional effects in a beam theory. Some researchers, have stu-
died local buckling of beams employing Generalized Beam Theory
(GBT), i.e., “a thin-walled prismatic bar theory that includes cross-
section in-plane and out-of-plane(warping) deformation through the
consideration of so-called cross-section deformation modes” [6]. Davies
et al. used GBT to investigate the buckling of cold-formed steel (open-
section) profiles [7], while Camotim et al. studied local buckling of
beams regarding steel and aluminum columns [8], thin-walled regular
polygon tubes, angle, T-sections and cruciform thin-walled members
[9–11], cold formed steel purlins [12], steel-concrete composite beams
[6] employing GBT. Other researchers, studied buckling problems of

https://doi.org/10.1016/j.engstruct.2018.08.069
Received 18 April 2018; Received in revised form 2 August 2018; Accepted 20 August 2018

⁎ Corresponding author.
E-mail addresses: a.argyridi@gmail.com (A.K. Argyridi), cvsapoun@central.ntua.gr (E.J. Sapountzakis).
URL: http://users.ntua.gr/cvsapoun/ (E.J. Sapountzakis).

Engineering Structures 177 (2018) 770–784

0141-0296/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2018.08.069
https://doi.org/10.1016/j.engstruct.2018.08.069
mailto:a.argyridi@gmail.com
mailto:cvsapoun@central.ntua.gr
http://users.ntua.gr/cvsapoun/
https://doi.org/10.1016/j.engstruct.2018.08.069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2018.08.069&domain=pdf


beams employing finite strip method [13–15] that relies on plate theory
assumptions which are applied to each wall of the cross-section. Kar-
amanos et al. [16–19] formulated a model that accounts for global
behavior and for local buckling as well. The global (beam-type) re-
sponse is described through Lagrange polynomials and the cross-sec-
tional ovalization/warping in terms of trigonometric functions. This
formulation has been quite successful in simulating local buckling in
circular hollow section members [18,19]. Local buckling has also been
examined for several cases of thin-walled sections [e.g., 20–23]. All the
aforementioned researches deal with the problem of local buckling,
however, they employ assumptions of thin tube theory and, in some
cases, their application is limited by the cross-section shape.

In this paper, a higher order beam theory is employed for linear
local buckling analysis [24] of beams of homogeneous cross-section,
taking into account warping and distortional phenomena due to axial,
shear, flexural, and torsional behavior [25,26]. The rest of the paper,
except the introduction, consists of three main parts. In the first one,
Section 2: “Statement of the Problem”, the displacement field of the
arbitrarily shaped, homogeneous beam is defined. It is employed for the
derivation of the expressions of stresses and strains which along with
the external actions are introduced in the principle of virtual work. In
order to separate the analysis in two stages, i.e., a cross sectional ana-
lysis and a longitudinal analysis, which is the concept of a beam theory,
both stresses and strains are written as a product of two matrices. The
first one contains expressions which are functions of the cross-sectional
coordinates, the warping functions and the components of distortional
functions while the second one contains expressions which are func-
tions of the components of the displacement vector and their deriva-
tives. As far as the evaluation of warping and distortional functions is
concerned, the so-called sequential equilibrium scheme [26] is em-
ployed establishing the possible in-plane (distortion) and out-of-plane
(warping) deformation patterns of the cross-section by means of the
Boundary Element Method (BEM). The cross-sectional analysis is based
on [25] for axial modes and on [26] for flexural and torsional modes. In
the next section, Section 3 “Numerical Solution” the Finite Element
Method (FEM) is employed discretizing the beam and formulating the
geometric stiffness matrix and the buckling criterion by exploiting the
principal of virtual work of Section 2 and utilizing the boundary con-
ditions. In the final main part of the paper, Section 4 “Numerical Ex-
amples” representative examples are presented where buckling load is
calculated and is compared with beam and 3d solid finite elements
analysis results in order to validate the proposed method and demon-
strate its efficiency and accuracy. Finally, the conclusions of the present
paper are summarized in Section “Conclusions”, while the expressions

of the matrices which form strains and stresses are provided in
“Appendix A”.

The essential features and novel aspects of the proposed formula-
tion, compared with previous ones, are summarized as follows.

(i) For the first time in the literature, linear (global and local) buck-
ling analysis is conducted based on a very general beam theory
including axial, shear, flexural, and torsional warping and distor-
tional effects, following the sequential equilibrium scheme and
employing BEM.

(ii) The cross-section can be thin- or thick-walled. The formulation
does not stand on the assumption of thin-walled structure.

(iii) It performs linear (global and local) buckling analysis based on a
higher-order beam theory that is of increased interest due to its
important advantages over refined approaches such as 3-D solid or
shell solutions.

(iv) The influence of Poisson’s ratio is taken into account in the linear
local buckling analysis of beams.

(v) The beam is supported by the most general linear boundary con-
ditions including elastic support or restraint.

2. Statement of the problem

2.1. Displacement components

Let us consider a prismatic beam of length L (Fig. 1a), of an arbi-
trarily shaped cross-section of area A (Fig. 1b). The cross-section con-
sists of a homogeneous and isotropic material, with modulus of elasti-
city E and Poisson’s ratio , occupying the two-dimensional multiply
connected region of the y z, plane (Fig. 1b) bounded by the j

= …j K( 1, 2, , ) boundary curves. These curves are piecewise smooth,
i.e., they may have a finite number of corners. In Fig. 1, CYZ is the
principal bending coordinate system through the cross-section centroid
C , while yc, zc are its coordinates with respect to Syz principal shear
system of axes through the cross-section shear center S. Finally, it holds
that =Y y yc and =Z z zc.

The beam can be supported by the most general linear boundary
conditions and is subjected to the combined action of the arbitrarily
distributed or concentrated axial loading p X( )x along X direction,
transverse loading p x( )y and p x( )z along the y, z directions, respec-
tively, twisting moment m x( )x along x direction, bending moments
m x( )Y

P , m x( )Z
P along Y , Z directions, respectively, as well as bending
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C: Centroid
S: Shear center
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Fig. 1. Prismatic beam under loading (a) with a homogeneous cross-section of arbitrary shape occupying the two dimensional region Ω (b).
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