Planar graphs are 9/2-colorable

Daniel W. Cranston ${ }^{\text {a }}$, Landon Rabern ${ }^{\text {b }}$
${ }^{\text {a }}$ Virginia Commonwealth University, Richmond, VA, United States
b LBD Data Solutions, Lancaster, PA, United States

A R T I C L E I N F O

Article history:

Received 19 January 2015
Available online xxxx

Keywords:

4 Color Theorem
Coloring
Planar
Homomorphism
Fractional coloring

A B S T R A C T

We show that every planar graph G has a 2-fold 9-coloring. In particular, this implies that G has fractional chromatic number at most $\frac{9}{2}$. This is the first proof (independent of the 4 Color Theorem) that there exists a constant $k<5$ such that every planar G has fractional chromatic number at most k.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs in this paper are finite, loopless, and simple (parallel edges are forbidden). To fractionally color a graph G, we assign to each independent set in G a nonnegative weight, such that for each vertex v the sum of the weights on the independent sets containing v is 1 . A graph G is fractionally k-colorable if G has such an assignment of weights where the sum of the weights is at most k. The minimum k such that G is fractionally k-colorable is its fractional chromatic number, denoted $\chi_{f}(G)$. (If we restrict the weight on each independent set to be either 0 or 1 , then we return to the standard definition of chromatic number.) In 1997, Scheinerman and Ullman [13, p. 75] succinctly described the state of the art for fractionally coloring planar graphs. Not much has changed since then.

[^0]The fractional analogue of the four-color theorem is the assertion that the maximum value of $\chi_{f}(G)$ over all planar graphs G is 4 . That this maximum is no more than 4 follows from the four-color theorem itself, while the example of K_{4} shows that it is no less than 4. Given that the proof of the four-color theorem is so difficult, one might ask whether it is possible to prove an interesting upper bound for this maximum without appeal to the four-color theorem. Certainly $\chi_{f}(G) \leq 5$ for any planar G, because $\chi(G) \leq 5$, a result whose proof is elementary. But what about a simple proof of, say, $\chi_{f}(G) \leq \frac{9}{2}$ for all planar G? The only result in this direction is in a 1973 paper of Hilton, Rado, and Scott [7] that predates the proof of the four-color theorem; they prove $\chi_{f}(G)<5$ for any planar graph G, although they are not able to find any constant $c<5$ with $\chi_{f}(G)<c$ for all planar graphs G. This may be the first appearance in print of the invariant χ_{f}.

In Section 2, we give exactly what Scheinerman and Ullman asked for-a simple proof that $\chi_{f}(G) \leq \frac{9}{2}$ for every planar graph G. In fact, this result is an immediate corollary of a stronger statement in our main theorem. Before we can express it precisely, we need another definition. A k-fold ℓ-coloring of a graph G assigns to each vertex a set of k colors, such that adjacent vertices receive disjoint sets, and the union of all sets has size at most ℓ. If G has a k-fold ℓ-coloring, then $\chi_{f}(G) \leq \frac{\ell}{k}$. To see this, consider the ℓ independent sets induced by the color classes; assign to each of these sets the weight $\frac{1}{k}$. Now we can state the theorem.

Main Theorem. Every planar graph G has a 2-fold 9-coloring. In particular, $\chi_{f}(G) \leq \frac{9}{2}$.
In an intuitive sense, the Main Theorem sits somewhere between the 4 Color Theorem and the 5 Color Theorem. It is certainly implied by the former, but it does not immediately imply the latter. The Kneser graph $K_{n: k}$ has as its vertices the k-element subsets of $\{1, \ldots, n\}$ and two vertices are adjacent if their corresponding sets are disjoint. Saying that a graph G has a 2 -fold 9 -coloring is equivalent to saying that it has a homomorphism to the Kneser graph $K_{9: 2}$. To claim that a coloring result for planar graphs is between the 4 and 5 Color Theorems, we would like to show that every planar graph G has a homomorphism to a graph H, such that H has clique number 4 and chromatic number 5 . (Since K_{4} can map into H, we know that H has clique number at least 4. And clique number less than 5 means our result is something more than just the 5 Color Theorem. The fact that H has chromatic number 5 means that our result implies the 5 Color Theorem.) Unfortunately, $K_{9: 2}$ is not such a graph. It is easy to see that $\omega\left(K_{n: k}\right)=\lfloor n / k\rfloor$; so $\omega\left(K_{9: 2}\right)=4$, as desired. However, Lovász [9] showed that $\chi\left(K_{n: k}\right)=n-2 k+2$; thus $\chi\left(K_{9: 2}\right)=9-2(2)+2=7$. Fortunately, we can easily overcome this problem.

The categorical product (or universal product) of graphs G_{1} and G_{2}, denoted $G_{1} \times G_{2}$ is defined as follows. Let $V\left(G_{1} \times G_{2}\right)=\left\{(u, v) \mid u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$; now $\left(u_{1}, v_{1}\right)$ is adjacent to $\left(u_{2}, v_{2}\right)$ if $u_{1} u_{2} \in E\left(G_{1}\right)$ and $v_{1} v_{2} \in E\left(G_{2}\right)$. Let $H=K_{5} \times K_{9: 2}$. It is well-known [6] that if a graph G has a homomorphism to each of graphs G_{1} and G_{2},

https://daneshyari.com/en/article/11021699

Download Persian Version:
https://daneshyari.com/article/11021699

Daneshyari.com

[^0]: E-mail addresses: dcranston@vcu.edu (D.W. Cranston), landon.rabern@gmail.com (L. Rabern).
 https://doi.org/10.1016/j.jctb.2018.04.002
 0095-8956/® 2018 Elsevier Inc. All rights reserved.

