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Monotonicity Properties and Inequalities for
the Generalized Elliptic Integral of the First Kind ∗

Ti-Ren Huang, Song-Liang Qiu† and Xiao-Yan Ma
(Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract: The authors obtain some monotonicity and concavity properties, and asymptotically sharp bounds
for the generalized elliptic integral Ka(r) of the first kind and its special case K (r), the complete elliptic
integral of the first kind, by studying the monotonicity and concavity properties of certain combinations defined
in terms of the Gaussian hypergeometric function F(a, 1 − a; 1; x) and elementary functions, thus improving
some well-known results.
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1 Introduction

Throughout this paper, for the real parameters a, b, c with c � 0,−1,−2, · · · , we let

F(a, b; c; x) =2 F1(a, b; c; x) =
∞∑

n=0

(a, n)(b, n)
(c, n)n!

xn, x ∈ (−1, 1), (1.1)

denote the Gaussian hypergeometric function as usual, where (a, n) is the shifted factorial function (a, n) ≡
a(a + 1) · · · (a + n − 1) for n ∈ N, and (a, 0) = 1 for a � 0. F(a, b; c; x) is said to be zero-balanced if c = a + b.
It is well known that F(a, b; c; x) is widely applied in many fields of mathematics and some other disciplines,
and many other special functions in mathematical physics and even some elementary functions are particular
or limiting cases of this function. (Cf. [2, 4, 9, 12, 14–16, 18, 24, 33, 35, 48].)

For a ∈ (0, 1), the generalized elliptic integrals Ka(r) and K ′
a (r) of the first kind on [0, 1] are defined as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ka(r) = π2 F

(
a, 1 − a; 1; r2

)
, r ∈ (0, 1),

K ′
a (r) = Ka(r ′),

Ka(0) = π2 , Ka(1−) = ∞.
(1.2)

Here and hereafter we always let r ′ =
√

1 − r2 for r ∈ [0, 1]. If a = 1/2, then Ka(r) and K ′
a (r) reduce to the

following well-known complete elliptic integrals K (r) and K ′(r) of the first kind

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K (r) = π2 F

(
1
2 ,

1
2 ; 1; r2

)
=
∫ π/2

0

(
1 − r2 sin2 t

)−1/2
dt, r ∈ (0, 1),

K ′(r) = K (r ′),
K (0) = π2 , K (1−) = ∞.

(1.3)
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