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A B S T R A C T

Finite element based machining process models are used in research and industry for process design and opti-
mization. These models require a constitutive description of the material behavior to accurately model and
predict process responses such as cutting forces, temperatures, and residual stress. Calibration of these models to
low-strain uniaxial dynamic compression experiments can be troublesome since the machining process generally
imposes much larger strains than uniaxial compression. Calibration of finite element models directly to ma-
chining data is generally difficult since the models are computationally expensive and nonlinear optimization
methods for estimating the unknown calibration parameters yield non-unique solutions and require many
iterations. In this work we utilize a nonstationary Gaussian Process surrogate model to emulate the finite element
response and calibrate to experimental orthogonal cutting tests using a Bayesian inference framework. We as-
sume that the material yield behavior can be described by the Johnson-Cook material flow model. We find that
the nonstationary Gaussian Process model is an good surrogate for the complex finite element model. Cutting
forces measured from orthogonal tube turning experiments were used for calibration. Validation is performed
using a separate response variable - the cut chip thickness. Calibration results illustrate a preference for material
models with low hardening rates, which alleviates issues such as over-prediction of strain hardening behavior
when using the Johnson-Cook material flow model. The Bayesian formulation also captures the uncertainty in
the Johnson-Cook parameters, which can be used to quantify the uncertainty in the machining process responses.
The methods presented here are general and can be used for more complex constitutive and tribological models
for machining and other complex manufacturing processes.

1. Introduction

Finite element (FE) models of machining processes have enabled the
detailed simulation of complex cutting physics [1]. These numerical
models serve as useful tools for the design and optimization of manu-
facturing processes. The FE models incorporate plasticity, contact me-
chanics, and heat transfer physics. Therefore, to accurately model a
specific machining process, accurate models of these three components
are required. A great deal of effort in the machining community has
been spent on the plasticity law (flow law) [2–8] and, to a lesser extent,
on the tribological behavior [8,9]. The difficulty in establishing flow
laws appropriate for machining is that the thermo-mechanical condi-
tions imposed on the material during machining cannot be emulated by
standard mechanical tests. During machining, strains between [1–10]
can be expected with strain rates on the order of s10 104 6 1 and high
temperatures due to plastic work. Tension/compression split-

Hopkinson bar tests can impose strains typically as high as 0.5 with
rates as high as s104 1 [10,11]. Taylor-impact tests can impose higher
rates, s105 1, and larger local strains up to 2. However, it is difficult
to directly determine the flow stress from these experiments [12,13].
Similarly, split-Hopkinson shear tests can impose large shear strains and
strain rates [14] but the flow stress cannot be directly observed; instead
a model must be invoked to indirectly infer the uniaxial equivalent flow
stress. For instance, the von Mises criterion assumes that the stress may
be converted via = 3 and strains via = / 3 . Applying this to
Johnson and Cook's original OFHC-Cu data [10] yields reasonable re-
sults. However, when comparing with data in Ref. [14] the model
shows significant disparities. This discrepancy is most likely material
specific, and sensitive to the dependence of the yield surface on stress
triaxiality [15], and sensitive to the specimen geometry.

Therefore, identification of material-specific plasticity law directly
from machining experiments is an attractive strategy. The difficulty in
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doing so however is that the machining process is complex and hence,
like Taylor impact and shear configuration split-Hopkinson tests, the
complexity of the experiment confounds direct assessment of the flow
stress relationship. The first work to calibrate a flow law to machining
data is that by Özel and Zeren [4]. In this work the authors utilize the
Johnson-Cook (JC) [10] model to describe the material flow stress and
use Oxley's model [16] to describe the chip formation process. The use
of Oxley's analytical model alleviates the need for FE models and allows
for efficient iterative error minimization to obtain estimates of the
unknown JC parameters. Ulutan and Özel later extended this metho-
dology to incorporate the use of 3D FE based turning simulations to
calibrate Ti6Al4V and IN100 plasticity models [5]. The optimization
methodology in their work iteratively adjusts the unknown plasticity
coefficients until a convergence criterion for the difference between the
simulation and experimental forces is satisfied. This process is however
extremely costly as acknowledged by the authors who note that each
simulation required hrs50 to complete (utilizing computing resources
available in 2013). In comparison, our 2D orthogonal cutting simula-
tions require 1–6 h per simulation depending on the material settings of
each run. Özel, Arisoy, and Guo later extended this methodology to also
include a microstructure sensitive plasticity law [6].

There have been a few works in the machining community which
employ FE surrogate models for calibration. Kloche, Lung, and
Buchkremer employed a step-wise approach for calibrating the JC
model parameters where first the strain hardening terms were cali-
brated to uniaxial quasi-static room temperature data [17]. This was
followed by a tabular/interpolation calibration of the rate hardening
and thermal softening terms utilizing machining experiments and FE
simulations. Tool-chip interface friction was assumed to follow em-
pirical trends reported in the literature. The appeal of this approach is
in its simplicity. However, this is also the main limitation since the
model decomposition is only possible for simple model forms. As the
number of unknown parameters increases, it is unlikely that such a
simplified linear interpolation strategy would be suitable, especially if
there are strong interactions between the terms in the model. Agmell,
Ahadi, and Stahl employed a Kalman filter to identify the JC model
parameters [18,19]. A Coulomb friction coefficient of 0.4 was used in
all simulations. To compute the discrepancy between the FE simulations
and experiments, a 4th order polynomial surrogate model was built from
the FE simulations. The polynomial model modeled the change in
machining responses relative to a reference or nominal setting, which is
similar to work found in Refs. [20,21]. The influence of each of the
model parameters in Refs. [18,19] however was assumed to have no
interactions in the surrogate model and therefore can only capture in-
dependent effects. In general, polynomials as a basis for developing
surrogate models are limited to lower order polynomials and only a few
FE model parameters. This is due to the curse of dimensionality i.e. as
the dimensionality of the problem increases the number of terms in a
polynomial expansion increases exponentially. The authors in Refs.
[18,19] circumvent this problem by neglecting interaction terms, which
severely limits the utility of the surrogate model. A recent study em-
ployed the Response Surface Methodology (RSM) to build a surrogate
FE model for calibration [22]. Again, this strategy is fundamentally
built on regression of polynomials, which becomes intractable in high
dimensions. Furthermore, RSM was developed for physical experi-
ments, which contain observation errors. In contrast, FE model simu-
lations are deterministic and do not have such errors. Therefore, there is
a risk that RSM mistakenly fits the FE model responses to an overly
smooth manifold and attributes nonlinearities present in the FE model
to random error. Furthermore, these surrogate modeling approaches
assume some parametric form: linear interpolation [17], 4th order
polynomial with no interactions [18,19], and quadratic functions [22].
If the true response is not well described by the assumed model forms
then the surrogates are inadequate. For these reasons, statisticians favor
non-parametric Gaussian process models for calibration [23,24]. From
a model calibration perspective, a limitation shared by the foregoing

machining calibration studies is that they only produce point estimates
and cannot yield confidence intervals for the obtained quantities. This
is perhaps one reason why there exists a large range of reported JC
model parameter values in the literature for the same material systems
[8]. Additionally, the calibration methodologies employed in these
studies seldom consider the interaction with the assumed friction
model.

The advantage in utilizing a FE based machining model for identi-
fication of the constitutive model parameters is that much more com-
plex physics can be modeled. Analytical models require the use of as-
sumptions and simplifications to produce an easy-to-evaluate algebraic
result. The trade-off is that FE simulations are computationally ex-
pensive and so the choice of model is dependent on the goals, objec-
tives, and computational budget of the user. A nonlinear regression of a
model to experimental data requires iterative (nonlinear) optimization,
which renders the direct use of an FE model to be extremely costly.
Therefore, traditional calibration of plasticity laws from machining
experiments cannot be performed efficiently through direct use of FE
models.

The seminal work of Kennedy and O'Hagan addresses this difficulty
associated with calibration of computationally expensive computer
codes [23]. The inefficiency of an iterative procedure, each step with
multiple complex code evaluations, is alleviated instead by only eval-
uating the code prior to optimization. The user can decide on a rea-
sonable number of model evaluations, which are performed over a
suitable experimental design. From these evaluations, a Gaussian Process
(GP) model of the computer code can be built. The statistical GP model
can be interpreted as a surrogate model of the expensive code. The
model calibration step is performed by jointly considering both ex-
perimental data and model outputs over the experimental design. GP
models have good generalizing properties for emulating complex
functions. Furthermore, because they are statistical in nature, GP
models can also provide confidence bounds associated with function
estimates. Among the large class of surrogate models, this attribute
makes GPs distinctly unique. This statistical feature enables practi-
tioners to also consider the uncertainty associated with surrogate model
predictions. Just one example where this is useful is for risk-based de-
cision making. In the context of deterministic computer codes, GP
models are particularly attractive because they can be shown to be in-
terpolators [25]. This is critical since the output of a deterministic si-
mulation has no observation error and thus this information should be
preserved exactly. This is distinctly different from regression methods.
GP models have been utilized throughout engineering to model many
complex systems. A few examples include: cardiac cells [24], large eddy
combustion processes [26], knee prosthesis [27], spherical indentation
[28], and machined surface roughness [29].

In this work we seek to establish an efficient method for calibrating
orthogonal cutting FE models and quantifying the uncertainties of the
material flow law used in the FE models. First we establish an appro-
priate GP model for emulating the simulated cutting and thrust forces.
Then we employ a Bayesian inference framework to solve the inverse
problem and establish the posterior probability distribution of the
material flow law parameters. The approach is validated by performing
additional FE simulations at the obtained flow law solution and com-
paring the simulated deformed cut-chip thicknesses to experimental
observations.

2. Experimental methods

Tube turning experiments were performed to measure the cutting
and thrust forces under idealized orthogonal cutting conditions. All
experiments were performed in a CNC lathe (Okuma Spaceturn
LB2000EX). Bars of Al6061-T6 (BHN 95) were machined to an outer
diameter of 30.48 mm and a wall thickness of 2 mm. In order to obtain
the forces over a wide range of strains, strain rates, and temperatures,
cutting speeds of 12, 20, 30 and m min60 1 were used. Cutting tools

P. Fernandez-Zelaia, S.N. Melkote International Journal of Machine Tools and Manufacture 136 (2019) 45–61

46



Download English Version:

https://daneshyari.com/en/article/11023537

Download Persian Version:

https://daneshyari.com/article/11023537

Daneshyari.com

https://daneshyari.com/en/article/11023537
https://daneshyari.com/article/11023537
https://daneshyari.com

