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a b s t r a c t

This paper provides a complete link between dissipative systems theory and a celebrated result on
stability analysiswith integral quadratic constraints (IQCs). This is achievedwith anewstability character-
ization for feedback interconnections based on the notion of finite-horizon integral quadratic constraints
with a terminal cost. As the main benefit, this opens up opportunities for guaranteeing constraints on the
transient responses of trajectories in feedback loops within absolute stability theory. For systems affected
by parametric uncertainties, we show how to generate tight robustly invariant ellipsoids on the basis of
a classical frequency-domain stability test, with illustrations by a numerical example.
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1. Introduction

The framework of integral quadratic constraints (IQCs) was
developed in [1] and builds on the seminal contributions of
Yakubovich [2] and Zames [3,4]. It provides a technique for ana-
lyzing the stability of an interconnection involving a finite dimen-
sional linear time-invariant (LTI) system in feedback with another
system without any particular description and called uncertainty
in the sequel. The key idea is to capture the properties of the uncer-
tainty through filtered energy relations of the output in response
to inputs with finite energy. Mathematically, this is formalized by
requiring the L2-input–output pairs of the uncertainty to satisfy
an IQC in the frequency domain defined by a so-called multiplier.
Then stability of the interconnection is guaranteed if the LTI system
satisfies a suitable frequency-domain inequality (FDI) involving
the multiplier, which can be computationally verified by virtue
of the Kalman–Yakubovich–Popov (KYP) lemma. Various papers
(cf. [1,5] and references therein) give a detailed exposition of
different uncertainties and their corresponding multiplier classes
based on which the IQC theorem in [1] allows to generate practi-
cal computational robust stability and performance analysis tests.
The stunningly wide impact of this framework also incorporates,
among many others, the analysis of adaptive learning [6] or of
optimization algorithms [7].

Another central notion in systems theory is dissipativity [8,9],
which has been developed by Jan Willems with the explicit goal
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of arriving at a more fundamental understanding of the stability
properties of feedback interconnections [8]. Roughly speaking, a
systemwith a state–space description is said to be dissipative with
respect to some supply rate if there exists a storage function for
which a dissipation inequality is valid along all system trajectories;
for quadratic supply rates, such dissipation inequalities can be also
viewed as IQCs.

A large body of work has been devoted to analyzing the links
between both frameworks. In particular, if the multipliers (supply
rates) are non-dynamic and the two approaches involve so-called
hard (finite-horizon) IQCs, the relation between the two worlds is
well-established, as covered, e.g., by [10–14]; the classical small-
gain, passivity or conic-sector theorems are prominent examples,
with generalizations given in [15–19]. However, for the much
more powerful dynamicmultipliers in [1], the connection between
the related so-called soft (infinite-horizon) IQCs and dissipativ-
ity theory has only been demonstrated for specialized cases in
[20–25]. Relations of IQCs to Yakubovich’s absolute stability frame-
work and classical multiplier theory are discussed, e.g., in [26–32].

The purpose of this paper is to present a novel IQC theorem
based on the notion of finite-horizon IQCs with a terminal cost.
In generalizing [24,33,23], a first contribution is to show that the
IQC theorem from [1] for general multipliers can be subsumed to
our result, thus providing for the first time a tight link between
the IQC framework and dissipativity theory. As argued in [20,34],
such bridges permit to beneficially merge frequency-domain tech-
niques with time-domain conditions, e.g., for the construction
of local absolute stability criteria. This is illustrated by giving a
novel loss-less Lyapunovproof for awell-known frequency domain
robust stability test involving parametric uncertainties.
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The paper is structured as follows. In Section 2, we recall the
main IQC theorem and formulate our new stability result based
on dissipativity. Section 3 develops the technical ingredients that
allow to link the IQC theorem with our encompassing result in
Section 4. Finally, in Section 5 we illustrate the benefit of our
framework over standard IQC theory for parametric uncertainties.

Notation. Ln2e is the space of locally square integrable signals x :

[0, ∞) → Rn and Ln2 = {x ∈ Ln2e | ∥x∥2
:=
∫

∞

0 x(t)T x(t) dt < ∞},
while x̂ denotes the Fourier transform of x ∈ Ln2. For T > 0,
PT : Ln2e → Ln2, x ↦→ xT with xT := x on [0, T ], xT := 0 on
(T , ∞) is the truncation operator. The system S : Ln2e → Lm2e is
casual if SPT = PT SPT for all T > 0; S is bounded/stable if its
L2-gain is finite. For a transfermatrixG, we useG∗(s) := G(−s)T and

G = [A, B, C,D] =

[
A B
C D

]
means G(s) = C(sI − A)−1B + D;

further, RLn×m
∞

(RHn×m
∞

) is the space of transfer matrices without
poles on the extended imaginary axisC∞

=
:= iR∪{∞} (in the closed

right-half plane). Finally, col(u1, . . . , un) is the column vector with
entries u1, . . . , un.

2. A novel IQC theorem

2.1. Recap of standard IQC theorem

For setting up the IQC framework, we consider the LTI system

ẋ = Ax + Bw, x(0) = 0,
z = Cx + Dw

(1)

which defines the causal linear map G : Lnw
2e → Lnz2e and the transfer

matrix G(s) = C(sI − A)−1B + D; all throughout the paper A is
assumed to be Hurwitz. Given a system ∆ : Lnz2e → Lnw

2e without
any particular description, which is also called uncertainty and
tacitly assumed to be causal and stable,we investigate the feedback
interconnection

z = Gw + d and w = ∆(z) (2)

of G and ∆ that is affected by the external disturbance d ∈ Lnz2e .
The loop (2) is well-posed if, for any d ∈ Lnz2e , there exists a unique
response z ∈ Lnz2e that depends causally on d. The loop is stable if
there exists some γ ≥ 0 such that ∥z∥ ≤ γ ∥d∥ holds for all d ∈ Lnz2
and all responses of (2). We recall that (2) is well-posed and stable
iff (I − G∆) : Lnz2e → Lnz2e has a causal bounded inverse.

Let us now cite the main theorem of [1] which involves a
so-called multiplier Π , an essentially bounded Hermitian valued
function on the imaginary axis.

Theorem 1. The interconnection (2) is stable if there exists some
ϵ > 0 with(
G(iω)
Inw

)∗

Π (iω)
(
G(iω)
Inw

)
⪯ −ϵI for almost all ω ∈ R, (3)

if, for all τ ∈ [0, 1], the integral quadratic constraints∫
∞

−∞

(
ẑ(iω)

τ ∆̂(z)(iω)

)∗

Π (iω)
(

ẑ(iω)
τ ∆̂(z)(iω)

)
dω ≥ 0 for all z ∈ Lnz2 (4)

are satisfied, and if (2) is well-posed for τ∆ replacing ∆.

In order to apply the KYP Lemma to (3), we work throughout
this paper with rational multipliers. Following [1], these can be
described, w.l.o.g., in terms of a (usually tall) stable outer factor Ψ

and a real middle matrixM as

Π = Ψ ∗MΨ with Ψ ∈ RHny×(nz+nw )
∞ and M = MT

∈ Rny×ny . (5)

We emphasize that manymultiplier classes do admit a description
(5) with some fixedΨ and a variableM (see e.g. [1,5]). For the filter

Ψ =
(
Ψ1 Ψ2

)
with a column partition according to nz + nw , we

introduce the state–space description

ξ̇ = AΨ ξ + BΨ1z + BΨ2w, ξ (0) = 0,
y = CΨ ξ + DΨ1z + DΨ2w

(6)

where AΨ is Hurwitz.

2.2. Main result

On the basis of (1) and (6) let us now introduce the natural
realization(

Ψ1 Ψ2
) ( G

I

)
=

[ AΨ BΨ1C BΨ1D + BΨ2
0 A B
CΨ DΨ1C DΨ1D + DΨ2

]

=:

[
A B
C D

]
(7)

for the filtered transfer matrix of the inverse system graph. Since
AΨ and A are Hurwitz, the same holds for A. By the KYP-Lemma,
(3) is equivalent to the existence of someX = X T that satisfies the
KYP inequality

L

(
X ,M,

(
A B
C D

))
:=

(
I 0
A B
C D

)T (0 X 0
X 0 0
0 0 M

)(
I 0
A B
C D

)
≺ 0;

(8)

note that the operator L is just introduced to save space. In the
sequel we say that X certifies the FDI (3), or that X is a certificate
thereof; whenever relevant we assume X to be partitioned asA in
(7).

Now let (8) be valid. By Finsler’s lemma, we can choose some
γ > 0 with

L

⎛⎜⎜⎜⎜⎝X ,

⎛⎝ M 0 0
0 1

γ
I 0

0 0 −γ I

⎞⎠ ,

⎛⎜⎜⎜⎜⎝
AΨ BΨ1C BΨ1D + BΨ2 BΨ1

0 A B 0
CΨ DΨ1C DΨ1D + DΨ2 DΨ1

0 C D Inz
0 0 0 Inz

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ≺ 0.

(9)

This leads to a crucial dissipation inequality as follows. If z =

Gw + d is the response to any w ∈ Lnw
2e , d ∈ Lnz2e and if we let z,

w drive the filter (6), we infer(
ξ̇

ẋ

)
=

(
AΨ BΨ1C
0 A

)(
ξ

x

)
+

(
BΨ1D + BΨ2 BΨ1

B 0

)(
w

d

)
,(

ξ (0)
x(0)

)
= 0,(y

z
d

)
=

(CΨ DΨ1C
0 C
0 0

)(
ξ

x

)
+

(DΨ1D + DΨ2 DΨ1
D Inz
0 Inz

)(
w

d

)
.

Therefore, with the combined state trajectory η = col(ξ, x), we
can right- and left-multiply (9) by col(η, w, d) and its transpose to
obtain
d
dt

η(t)TXη(t) + y(t)TMy(t) +
1
γ

∥z(t)∥2
− γ ∥d(t)∥2

≤ 0

for almost all t ≥ 0.

After integration we arrive at the following dissipation inequality
for all T > 0:

η(T )TXη(T ) +

∫ T

0
y(t)TMy(t) dt +

∫ T

0

1
γ

∥z(t)∥2
− γ ∥d(t)∥2 dt.

(10)

On the other hand, let us consider the IQC (4) with τ = 1:∫
∞

−∞

(
ẑ(iω)

∆̂(z)(iω)

)∗

Ψ (iω)∗MΨ (iω)
(

ẑ(iω)
∆̂(z)(iω)

)
dω ≥ 0

for all z ∈ Lnz2 .

(11)
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