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This paper provides a complete link between dissipative systems theory and a celebrated result on
stability analysis with integral quadratic constraints (IQCs). This is achieved with a new stability character-
ization for feedback interconnections based on the notion of finite-horizon integral quadratic constraints
with a terminal cost. As the main benefit, this opens up opportunities for guaranteeing constraints on the
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by parametric uncertainties, we show how to generate tight robustly invariant ellipsoids on the basis of
a classical frequency-domain stability test, with illustrations by a numerical example.
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1. Introduction

The framework of integral quadratic constraints (IQCs) was
developed in [1] and builds on the seminal contributions of
Yakubovich [2] and Zames [3,4]. It provides a technique for ana-
lyzing the stability of an interconnection involving a finite dimen-
sional linear time-invariant (LTI) system in feedback with another
system without any particular description and called uncertainty
in the sequel. The key idea is to capture the properties of the uncer-
tainty through filtered energy relations of the output in response
to inputs with finite energy. Mathematically, this is formalized by
requiring the Ly-input-output pairs of the uncertainty to satisfy
an IQC in the frequency domain defined by a so-called multiplier.
Then stability of the interconnection is guaranteed if the LTI system
satisfies a suitable frequency-domain inequality (FDI) involving
the multiplier, which can be computationally verified by virtue
of the Kalman-Yakubovich-Popov (KYP) lemma. Various papers
(cf. [1,5] and references therein) give a detailed exposition of
different uncertainties and their corresponding multiplier classes
based on which the IQC theorem in [1] allows to generate practi-
cal computational robust stability and performance analysis tests.
The stunningly wide impact of this framework also incorporates,
among many others, the analysis of adaptive learning [6] or of
optimization algorithms [7].

Another central notion in systems theory is dissipativity [8,9],
which has been developed by Jan Willems with the explicit goal
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of arriving at a more fundamental understanding of the stability
properties of feedback interconnections [8]. Roughly speaking, a
system with a state-space description is said to be dissipative with
respect to some supply rate if there exists a storage function for
which a dissipation inequality is valid along all system trajectories;
for quadratic supply rates, such dissipation inequalities can be also
viewed as IQCs.

A large body of work has been devoted to analyzing the links
between both frameworks. In particular, if the multipliers (supply
rates) are non-dynamic and the two approaches involve so-called
hard (finite-horizon) IQCs, the relation between the two worlds is
well-established, as covered, e.g., by [10-14]; the classical small-
gain, passivity or conic-sector theorems are prominent examples,
with generalizations given in [15-19]. However, for the much
more powerful dynamic multipliers in [ 1], the connection between
the related so-called soft (infinite-horizon) IQCs and dissipativ-
ity theory has only been demonstrated for specialized cases in
[20-25]. Relations of IQCs to Yakubovich’s absolute stability frame-
work and classical multiplier theory are discussed, e.g., in [26-32].

The purpose of this paper is to present a novel IQC theorem
based on the notion of finite-horizon IQCs with a terminal cost.
In generalizing [24,33,23], a first contribution is to show that the
IQC theorem from [1] for general multipliers can be subsumed to
our result, thus providing for the first time a tight link between
the IQC framework and dissipativity theory. As argued in [20,34],
such bridges permit to beneficially merge frequency-domain tech-
niques with time-domain conditions, e.g., for the construction
of local absolute stability criteria. This is illustrated by giving a
novel loss-less Lyapunov proof for a well-known frequency domain
robust stability test involving parametric uncertainties.
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The paper is structured as follows. In Section 2, we recall the
main IQC theorem and formulate our new stability result based
on dissipativity. Section 3 develops the technical ingredients that
allow to link the IQC theorem with our encompassing result in
Section 4. Finally, in Section 5 we illustrate the benefit of our
framework over standard IQC theory for parametric uncertainties.

Notation. L}, is the space of locally square integrable signals x :
[0,00) > R"and L = {x € L3, | [IXI|> == [, x(t)'x(t)dt < oo},
while % denotes the Fourier transform of x € L. For T > 0,
Pr : L}, — L}, x — xp withxy := xon[0,T], xr :== 0on
(T, o0) is the truncation operator. The system S : L}, — L7 is
casual if SP; = PrSPr for all T > 0; S is bounded/stable if its
L,-gain is finite. For a transfer matrix G, we use G*(s) := G(—s)" and
G =1[A,B,C,D] = Ié D~ | means G(s) = C(sl —A)"'B+D;
further, RLTX™ (RHZ™) is the space of transfer matrices without
poles on the extended imaginary axis C> := iRU{oo} (in the closed
right-half plane). Finally, col(uy, ..., u,) is the column vector with
entries uq, ..., Up.

2. A novel IQC theorem
2.1. Recap of standard IQC theorem

For setting up the IQC framework, we consider the LTI system

Ax + Bw, x(0) =0,

X
Cx + Dw (1)

z

which defines the causal linear map G : Ly — L5 and the transfer
matrix G(s) = C(sI — A)~'B + D; all throughout the paper A is
assumed to be Hurwitz. Given a system A : L2 — L,” without
any particular description, which is also called uncertainty and
tacitly assumed to be causal and stable, we investigate the feedback
interconnection

z=Gw+d and w = A(z) (2)

of G and A that is affected by the external disturbance d € ng.
The loop (2) is well-posed if, for any d € ng, there exists a unique
response z € ng that depends causally on d. The loop is stable if
there exists some y > 0 such that ||z|| < y||d|| holds foralld € ng
and all responses of (2). We recall that (2) is well-posed and stable
iff (I — GA) : Ly, — LyZ has a causal bounded inverse.

Let us now cite the main theorem of [1] which involves a
so-called multiplier 7, an essentially bounded Hermitian valued
function on the imaginary axis.

Theorem 1. The interconnection (2) is stable if there exists some
€ > 0 with

. * .
(GI("")) M(iw) (GI(“‘))) < —el foralmostall w € R, (3)
Ny Ny,
if, for all T € [0, 1], the integral quadratic constraints
° Ziw) \*_ . Z(iw) 1y
/_OC (rZ(?)(iw)) I (iw) tZ(?)(iw) dw > 0 forall z € L) (4)

are satisfied, and if (2) is well-posed for T A replacing A.

In order to apply the KYP Lemma to (3), we work throughout
this paper with rational multipliers. Following [1], these can be
described, w.l.o.g., in terms of a (usually tall) stable outer factor ¥
and a real middle matrix M as

ny x(nz+ny

T = W*MW¥ with ¥ € RHY, Yand M = MT e RW*Y.  (5)

We emphasize that many multiplier classes do admit a description
(5) with some fixed ¥ and a variable M (see e.g. [1,5]). For the filter

¥ = (¥ ¥) with a column partition according to n; + n,,, we
introduce the state-space description

£ = Ayt +Byz+Byw, £0)=0,
y = GCg&+Dy,z+ Dy,w

where Ay is Hurwitz.

(6)

2.2. Main result

On the basis of (1) and (6) let us now introduce the natural
realization

c Ay By,C | By,D+ By,
(v ¥ )( p ): 0 A B
Cy Dy, C | Dy,D+ Dy,

[

for the filtered transfer matrix of the inverse system graph. Since
Ay and A are Hurwitz, the same holds for A. By the KYP-Lemma,
(3)is equivalent to the existence of some X = X7 that satisfies the
KYP inequality

I o\"/0 x o\ /I O
x(x,M, (2‘ g)) = (A 5) (x 0 0) <A B><O;
¢c p/ \o o M/\c »
(8)

note that the operator . is just introduced to save space. In the
sequel we say that & certifies the FDI (3), or that X is a certificate
thereof; whenever relevant we assume X’ to be partitioned as .4 in

(7).
Now let (8) be valid. By Finsler’s lemma, we can choose some
y > 0 with

Ay By, C ‘ By, D+ By, By,

M 0 0 0 A B 0

2| x, ( o 41 0 ) .| Cs Dy,C | Dy,D+Dy, Dy, <0.
0 0 -yl 0 C D I,
0 0 0 I,

9)
This leads to a crucial dissipation inequality as follows. If z =
Gw + d is the response to any w € Ly¥,d € Ly and if we let ,
w drive the filter (6), we infer

£ Ay By, C) (& By,D + By, By, \ (w
x o A J\x)T B o)\d)
£(0)
<x<0>>:°’
y Cy Dy, C Dy,D 4 Dy, Dy,
(z) <5” %><5>+(W p 1,?)('5)
d 0 0 X 0 Inz

Therefore, with the combined state trajectory n = col(&, x), we
can right- and left-multiply (9) by col(n, w, d) and its transpose to
obtain

d 1

71O () + y(6) My(e) + ;llz(t)ll2 —yld@®)* <0
for almost all t > 0.

After integration we arrive at the following dissipation inequality

forallT > 0:

T
DT X(T) + / YO My(E) dt + /
0 0

T
1
;Ilz(f)ll2 — ylld(0)]* dt.

(10)
On the other hand, let us consider the IQC (4) with T = 1:

© (i) \* 2(iw)
[oo (Z(?)(lw)) Y (iw)* MY (iw) (Z(?)(la))) do >0 (11)

forallz € L.
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