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a b s t r a c t

Diffusion processes are commonplace in many scientific disciplines, as they describe a broad range of
physical phenomenon. Consider a diffusion process observed through linear sensors with additive white
noise. We derive the optimal placement of these sensors for estimating this process, where optimality
is defined in terms of the mean squared estimation error (MSE) of the state given past observations.
We consider two cases. First, we assume the sensors to be orthogonal. We show in this case that the
minimumMSE is related to the nuclear norm of the systemmatrix of the process. Second, we remove the
orthogonality constraint and show that the MSE is related to the Schatten p-norm of the systemmatrix of
the process and the optimal sensors are proportional its matrix cube root. We present simulation results
illustrating the fact that the gain afforded by optimizing the choice of sensors depends on the ratio p/n,
where n is the dimension of the system and p the dimension of the Wiener processes driving it, and this
gain is in general large, especially when p/n is small.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes are widely used to model stochastic, un-
certain or noisy dynamics in engineering, economic, financial and
biological systems [1–4]. We refer [5,6] for an introductory ex-
position of their range of applications and basic properties. As
a consequence, estimating the state of such process from noisy
observations is a very commonly encountered problem in a wide
range of disciplines. We provide in this paper a complete solution
to this outstanding problem.

The type of processes we consider are described by the stochas-
tic differential equation [7]:{

dxt = B dwt

dyt = C⊤xt dt + dvt ,
(1)

where B ∈ Rn×p, C ∈ Rn×m and vt , wt are independent, vector-
valued standard Wiener processes, and x0 = Bw for w ∈ Rp a
Gaussian random variable. It is well-known that the density ρ(x)
of x obeys the generalized heat equation

∂ρ

∂t
=

1
2

p∑
j=1

n∑
i,i′=1

bijbi′j
∂2ρ

∂xi∂xi′
. (2)
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Eq. (1) can be interpreted as the sample path description of the
generalized diffusion described by Eq. (2), which is well-known to
arise in themodeling of, e.g., solvent diffusion or heat diffusions [8].

Denote by span{B} the vector subspace of Rn spanned by the
columns of B. It is easy to see from (1) that xt ∈ span{B}. Without
loss of generality, we assume throughout the paper that B is of full
column rank. This implies in particular that p ≤ n. We call xt the
state process, and yt the measurement process. We denote by y[0,t)
the signal ys for s ∈ [0, t). We refer to C as the sensing matrix of the
system.

The well-known Kalman–Bucy filter [9] provides the minimum
mean-squared error estimate of the state xt given the past mea-
surements y[0,t). We describe the optimal estimation procedure in
Section 2.2. The question we answer here is the following:

Q : Which sensing matrix C minimizes the estimation error?
Equivalently, which sensing matrix minimizes the trace of
the covariance of the conditional density ρ(x | y).

The estimate of the state provided by the Kalman–Bucy filter
has bounded mean squared error provided that B⊤C is of full row
rank (we prove this in Lemma 2). But within the class of sensing
matrices C yielding a bounded estimation error, the error afforded
by the Kalman–Bucy filter is easily seen to depend on the placement
or design of sensors C . One such type of dependence can be easily
dealtwith: the estimation error canbe shown todecreasewhen the
norm of C increases, all other things equal; said more precisely, for
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0 < r1 < r2 real numbers, and C so that C⊤B in non-singular, the
estimation error afforded by r1C can be shown to be larger than the
estimation error afforded by r2C . In physical terms, this behavior
reflects that a higher signal-to-noise ratio at the sensors yields a
better estimate. We investigate here the complementary problem
of finding an optimal sensor C of fixed norm.

Related work. The problem of optimally designing sensors to es-
timate the state of a dynamic process has been investigated in a
variety of scenarios. We provide a brief overview of the recent
relevant literature. There is a large literature exploring the optimal
sensor design, or the dual problem of optimal actuator design, in
the infinite-dimensional case [10–12]. The main objective in this
setting is to obtain conditions under which the existence of an
optimal design is guaranteed, and exhibit conditions under which
a sequence of finite-dimensional optimal designs converge to an
optimal design. In the finite-dimensional case, choosing a set of
sensors ci out of a finite family of potential sensors, has been
investigated by several authors. In [13], the authors assign a cost to
each sensor and show that optimally choosing a subset of sensors
meeting cost constraints is an NP-hard problem, and furthermore
exhibit a class of dynamics for which greedy algorithms yield a
provably good approximation to the optimal selection. In [14], the
authors look at a ‘‘relaxed’’ selection problem, where sensors are
selected with a weight wi to be optimized and propose a convex
optimization algorithm. A different type of methods, based on L1
optimization as a proxy for sensor selection, has been investigated
in [15]. Similar scenarios have also been investigated in the statis-
tics literature in the subfield of experiment design, see [16] for a
start to the relevant literature.

Optimal design for continuous-time dynamics has been investi-
gated in our recent work [17], where the case of a continuous-time
Gauss–Markov process:{

dxt = Axtdt + Bdwt

dyt = C⊤xtdt + dvt ,
(3)

where A ∈ Rn×n was considered. It was shown there that if A
is Hurwitz, i.e. the real part of its eigenvalues are strictly neg-
ative, and ∥C∥ is not too large, then the optimal sensor design
problem admits an essentially unique (i.e. up to some symmetry)
optimal sensor. Furthermore, we have provided a gradient descent
algorithm which was proved to converge to this optimal solution
generically. The assumption of A stable was required for the result
of [17] to hold, which precludes their application to system (1).

Contributions of the paper.We give in this paper an explicit solution
to the optimal sensor design problem for system (1). We will see
that the solution is reminiscent of the matched filters that appear
often in signal detection [18]. This is not surprising, as one can think
of the matched filters as a way to maximize the signal-to-noise
ratio of the signal that will be fed to a detection algorithm or, in
the present case, to the Kalman–Bucy filter.

We now describe the contents of the paper in more detail. We
think of the columns of the sensing matrix C as individual sensors.
We investigate in the paper two scenarios. First, we show that
if the sensors are orthogonal to each other and are of the same
norm, then a solution Copt to the optimal sensor design problem
is such that the column space of Copt contains the column space
of B (Theorem 5). This optimal performance measure is exactly
captured by the nuclear norm of B.

In the second scenario, we relax the constraint that the angles
between the column vectors of C are fixed. In other words, we
constrain only the sensors to have a given norm (which is related
to the signal-to-noise ratio of the measurements they provide, as
argued above), but their orientations and number are arbitrary.
This second scenario requires a more involved analysis than the
first one, but we nevertheless can still exhibit an explicit solution.

We show in Theorem 6 that the optimal sensors are proportional
to the cube root of B, in a sense made precise below. The opti-
mal performance measure is in this case related to the Schatten
2/3-norm of B.

2. Mathematical background and problem formulation

2.1. Background and notation

We denote by In the n × n identity matrix, by 0n×p the n × p
zero matrix and by diag(s1, . . ., sp) the p × p diagonal matrix with
diagonal entries si, i = 1, . . . , p.With a slight abuse of notation,we
also denote by diag(s), for s ∈ Rp×p the vector of Rp with entries
the diagonal entries of s: diag(s) = (s11, . . ., spp)⊤. We let GL(n) be
the set of invertible n × nmatrices. We let O(n) be the set of n × n
orthogonal matrices: O(n) = {Θ ∈ GL(n) | Θ⊤Θ = In}, and SO(n)
be the n × n orthogonal matrices with unit determinant:

SO(n) := {Θ ∈ O(n) | det(Θ) = 1}.

Given a matrix B ∈ Rn×p, we denote its singular value decomposi-
tion [19] by

B = usv

where u ∈ SO(n), s ∈ Rn×p and v ∈ O(p). The matrix s can have
non-zero elements only at the entries s11, . . . , spp. With a slight
abuse of terminology, we call such a matrix s diagonal, The values
sii, for i = 1, . . . , p are called the singular values of B and are always
non-negative. Note that the s2ii are also the eigenvalues of B⊤B. We
refer to the first p columns of u as the principal part of u, and denote
it by up. Thus, up ∈ Rn×p is such that u⊤

p up = Ip. We let St(n, p) be
the Stiefel manifold of p-frames in Rn [20]:

St(n, p) := {C ∈ Rn×p
| C⊤C = Ip},

and up is an element of St(n, p). Similarly, we denote by sp the
matrix formed by the first p rows of s. Thus sp is a diagonal p × p
matrix with the singular values of B on the diagonal. The singular
value decomposition is then reduced to

B = upspv.

with up ∈ St(n, p), sp ∈ Rp×p and v ∈ O(p).

Schatten p-norms and nuclear norm of matrices.
Let r > 0 be a positive real number, let B ∈ Rn×p and set

B = usv to be the singular value decomposition of B. The Schatten–
von Neumann r-quasi-norm of B is defined as

∥B∥r =

( p∑
i=1

sri

)1/r

.

Said otherwise, it is the r-quasi-norm of the vector of singular
values of B [21]. If r ≥ 1, it is a norm and if r = 1, it is the nuclear
norm (also known as the trace norm) of B. We have the following
inequality:

Lemma 1. Let 0 < q < r be two real numbers and B ∈ Rn×p. Then

∥B∥q ≤ p
1
q −

1
r ∥B∥r .

This inequality has certainly been observed before; we repro-
duce a proof in the Appendix for the sake of completeness.

2.2. Problem formulation

The minimum mean squared error (MSE) estimator of xt given
the past measurements y[0,t) is the conditional expectation:

x̂t := E(xt | y[0,t)).
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